Real-time SLAM, Traversability Analysis and Navigation Planning in Rough Terrain based on 3D Lidar

#### Sven Behnke

Autonomous Intelligent Systems



#### **DLR SpaceBot Cup 2013**

- Mobile manipulation in Mars-like environment
- Supervised autonomy
- Explorer robot with 6 wheels and 7 DoF manipulator

[Stückler et al. Journal of Field Robotics 2016]





#### **Sensor Head**

3D lidar with spherical FoV 8× RGB-D camera ■ 3× Full HD camera Fisheye camera



[Stückler et al. Journal of Field Robotics 2016]



### **Local Navigation**

 Omnidirectional height from RGB-D cameras



- Navigation costs from local height differences
- A\* path planning





[Schwarz, Behnke, Robotik 2014]



# **Allocentric Path Planning**

#### 3D map from registered 3D laser scans



[Stückler et al. JFR 2016]



- Cell costs derived from local terrain properties
  - Local height differences
  - Slope
- A\* path planning



#### **DLR SpaceBot Cup 2013**



[Stückler et al. Journal of Field Robotics 2016]







#### **Mobile Manipulation Robot** Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head

3D laser scanner Cameras 8 DOF gripper Momaro WiFi router 7 DOF arm Base with CPU and battery 4 DOF leg 2 DOF wheels [Schwarz et al. Journal of Field Robotics 2016]



#### **Driving a Vehicle**



[Schwarz et al. Journal of Field Robotics 2016]



# Momaro Leg Design

- Robotis Dynamixel Pro Actuators
  - Hip, knee: 44 Nm
  - Ankle pitch: 25 Nm
  - Ankle yaw: 6 Nm
  - Wheel drive: 2× 6 Nm
- Carbon composite springs in links
- Omnidirectional driving
- Base height and attitude changes
- Terrain adaptation
- Making steps

[Schwarz et al. Journal of Field Robotics 2016]









[Schwarz et al. Journal of Field Robotics 2016]



# **Local Multiresolution Surfel Map**

- Registration and aggregation of 3D laser scans
- Local multiresolution grid
  Surfel in grid cells

[Droeschel et al. ICRA 2014, IAS 2014]



Aggregated scans







#### **Opening a Door**

# FAIRPLEX FAIRPLEX FAIRPLEX FAIRPLE 115 4х 23:20:32 05/06/2015 UTC

[Schwarz et al. Journal of Field Robotics 2016]



#### **Filtering Dynamic Objects**

 Maintain occupancy in each cell



[Droeschel et al. under review]



#### **Allocentric 3D Mapping**

 Registration of egocentric maps by graph optimization





[Droeschel et al., ICRA 2014, IAS 2014]













#### **Drive Through Debris**



[Schwarz et al. Journal of Field Robotics 2016]



#### **Stair Climbing**

- Determine leg that most urgently needs to step
- Weight shift
  - Move the base relative to the wheels in sagittal direction
  - Drive the wheels on the ground relative to the base
  - Modify the leg lengths (and thus the base orientation)
- Step to first possible foot hold after height change





[Schwarz et al., ICRA 2016] Real-time SLAM, Traversability Analysis and Navigation Planning in Rough Terrain based on 3D Lidar

#### **Full-body Stair Climbing**





[Schwarz et al., ICRA 2016] Real-time SLAM, Traversability Analysis and Navigation Planning in Rough Terrain based on 3D Lidar

#### **DLR SpaceBot Cup 2015**

#### 3D map

[Schwarz et al., Frontiers on Robotics and AI 2016]





#### **DLR SpaceBot Camp 2015**





[Schwarz et al., Frontiers on Robotics and AI 2016]

#### **Navigation Planning**

- Costs from local height differences
- A\* path planning



[Schwarz et al., Frontiers on Robotics and AI 2016]



#### **Considering Robot Footprint**

 Costs for individual wheel pairs from height differences

- Base costs
- Non-linear combination yields
  3D (x, y, θ) cost map

[Klamt and Behnke, under review]





# **3D Driving Planning (x, y, θ): A\***

#### 16 driving directions



#### Orientation changes



#### => Obstacle between wheels

[Klamt and Behnke, under review]



Real-time SLAM, Traversability Analysis and Navigation Planning in Rough Terrain based on 3D Lidar



Height

## **Making Steps**

- If not drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable



[Klamt and Behnke, under review]



## **Hybrid Driving-Stepping Plan**

#### Path Planning Example



Scenario: Momaro has to step up a height difference and manoeuvre around a small wall.



[Klamt and Behnke, under review] Real-time SLAM, Traversability Analysis and Navigation Planning in Rough Terrain based on 3D Lidar

#### **Detailed Realization of Steps**

**Step Generation** 





[Klamt and Behnke, under review] Real-time SLAM, Traversability Analysis and Navigation Planning in Rough Terrain based on 3D Lidar

#### Conclusions

- Compliant wheeled-legged base
  - Large adjustable support polygon
  - Omnidirectional driving
  - Terrain adaptation, weight shift, steps
- 3D lidar-based SLAM
- Geometric drivability analysis
- Demonstrated autonomous navigation in rough terrain
- Planned hybrid drivingstepping locomotion
- Future: Semantic surface segmentation



#### **Team NimbRo Rescue @ DRC**



#### http://www.nimbro.net/Rescue







