Hybrid Wheeled-Legged Locomotion in Semi-Structured Environments

Sven Behnke

Autonomous Intelligent Systems

Mobile Manipulation Robot Momaro

- Four legs ending in pairs of steerable wheels
- Anthropomorphic upper body
 - 7 DoF arms
 - Four-finger grippers
- Sensor head

universität**bonn** ais

- 3D laser scanner
- 8 RGB-D cameras
- Panoramic cameras
- Wide-angle camera
- Strong CPU (i7Quad 4 GHz)

[Schwarz & Behnke, LBR, ICRA 2015; Rodehutskors et. al., Humanoids 2015]

Local Navigation Planning

Local terrain model from omnidirectional RGB-D

A*

Cell costs and planned path

[Schwarz, Behnke, Robotik 2014]

Rollout

Allocentric Path Planning

3D map from registered 3D laser scans

[Stückler et al. JFR 2015]

- Cell costs derived from local terrain properties
 - Local height differences
 - Slope

Momaro Leg Design

- Robotis Dynamixel Pro Actuators
 - Hip, knee: 44 Nm
 - Ankle pitch: 25 Nm
 - Ankle yaw: 6 Nm
 - Wheel drive: 2x 6 Nm
- Carbon composite springs in links
- Omnidirectional driving
- Base height and attitude changes
- Terrain adaptation
- Making steps

5

Getting Up from the Floor

Omnidirectional Driving

Climbing over an Obstacle

User Interface for Footprint and Attitude Control

9

User Interface for Keyframes

Cartesian

Joint space

DARPA Robotics Challenge

AIRPLEX FAIRPLEX FAIRPLEX At the DARPA Robotics Challenge, Momaro demonstrated driving a car. 4х 23:15:03 05/06/201

Climbing out of the Car

Traversing Debris

Door Opening

- Camera image
- 3D laser scan
- Omnidirectional height map

Stair Climbing

- Determine leg that most urgently needs to step
- Weight shift
 - Move the base relative to the wheels in sagittal direction
 - Drive the wheels on the ground relative to the base
 - Modify the leg lengths (and thus the base orientation)
- Step to first possible foot hold after height change

Faster Stair Climbing

DLR SpaceBot Cup Qualification

At DLR SpaceBot Cup qualification, Momaro demonstrated manipulation on the floor

Conclusions

- Compliant wheeled-legged base
- Large adjustable support polygon
- Steerable wheels allow for omnidirectional driving
- Legs support terrain adaptation, weight shifts, and making steps when necessary
- Demonstrated mobile manipulation tasks
- Future work will focus on more autonomous functions

Team NimbRo Rescue @ DRC

http://www.nimbro.net/Rescue

Hybrid Wheeled-Legged Locomotion in Semi-Structured Environments 2

20