

HYBRID DRIVING-STEPPING LOCOMOTION IN CHALLENGING ENVIRONMENTS

Tobias Klamt, Max Schwarz, David Droeschel, Sven Behnke

MOTIVATION

Wheeled / tracked locomotion

iRobot PackBot [Yamauchi et al.]

- + Fast
- + Energy efficient
- + High stability
- Only applicable to suitable terrain

Legged locomotion

StarlETH [Wermelinger et al.]

- Only requires isolated footholds
 - Locomotion in challenging terrain
 - Slow
- High energy consumption
- Less stable

Hybrid driving-stepping locomotion

Momaro [Schwarz et al.]

- + Combines advantages of both locomotion types
- Chooses best locomotion strategy for each situation
- + Enables unique locomotion features

MOBILE MANIPULATION ROBOT MOMARO

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

[Schwarz et al. Journal of Field Robotics 2017]

23:28:21 05/06/2015 UTC

4x

TEAM NIMBRO RESCUE

Best European Team (4th place overall), solved seven of eight tasks in 34 minutes

STAIR CLIMBING

Determine leg that most urgently needs to step

Weight shift: sagittal, lateral, driving changes support

Step to first possible foot hold after height change

[Schwarz et al., ICRA 2016]

DLR SPACEBOT CUP 2015

AUTONOMOUS MISSION EXECUTION

3D mapping & localization

 Mission and navigation planning

[Schwarz et al. Frontiers 2016]

NAVIGATION WHILE BUIDING A 3D MAP

- Exploration of the arena during mission
- Frequent replanning
 - Costs from local height differences
 - A* path planning

[Schwarz et al., Frontiers in Robotics and Al 2016]

LIDAR-BASED 3D SLAM

[Droeschel and Behnke, ICRA 2018]

LOCAL MULTIRESOLUTION SURFEL MAP

- Registration and aggregation of 3D laser scans
- Local multi-resolution grid
- Surfel in grid cells

[Droeschel et al., Robotics and Autonomous Systems 2017]

Multiresolution grid

FILTERING DYNAMIC OBJECTS

- Maintain occupancy in each cell
- Incorporate measurements by ray casting

Log-odds

ALLOCENTRIC 3D MAPPING

 Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]

HIERARCHICAL POSE GRAPH

Local multiresolution maps as nodes in allocentric pose graph

- Scan poses in local multiresolution map (local optimization window)
- Continuous-time trajectory between scan poses

[Droeschel and Behnke, ICRA 2018]

3D MAP OF INDOOR+OUTDOOR SCENE

[Droeschel et al., Robotics and Autonomous Systems 2017]

3D MAP

HYBRID DRIVING-STEPPING LOCOMOTION

Driving locomotion planning

Omnidirectional [Ziaei et al., 2014]

Actively reconfigurable [Brunner et al., 2012]

Legged locomotion planning for challenging terrain

[Wermelinger et al., 2016]

[Perrin et al., 2016]

[Short et al., 2017]

Hybrid driving-stepping robots

HUBO

Handle

Chimp

CONSIDERING ROBOT FOOTPRINT

Costs for individual wheel pairs from height differences

Base costs

Non-linear combination yields
3D (x, y, θ) cost map

[Klamt and Behnke, IROS 2017]

3D DRIVING PLANNING (X, Y, \Theta): A*

MAKING STEPS

- If not drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable

[Klamt and Behnke: IROS 2017]

Expanding Abstract Steps to Detailed Motion Sequences

[Klamt and Behnke: IROS 2017]

Planning for Challenging Scenarios

[Klamt and Behnke: IROS 2017]

PLANNING ON MULTIPLE LEVELS OF ABSTRACTION

- Combine planning with multiresolution and multiple robot representation dimensions
- Compensate information loss in coarser representations through additional semantics
- Combine all three levels in one planner

[[]Klamt and Behnke, ICRA 2018]

PLANNING EXPERIMENTS

Foot costs and result paths in different levels of representation

- Abstraction to higher levels significantly accelerates planning.
- Path quality is good in all levels.
 - Planning on combined levels provides high quality paths in feasible time.

[Klamt and Behnke, ICRA 2018]

Experiment: Planning on Combined Levels of Representation

[Klamt and Behnke, ICRA 2018]

ROBUST MOBILITY AND DEXTEROUS MANIPULATION IN DISASTER RESPONSE BY FULLBODY TELEPRESENCE IN A CENTAUR-LIKE ROBOT

CENTAURO APPROACH

disaster-response tasks

1ST CENTAURO ROBOT

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

OPENING AND GOING THROUGH A DOOR

Locomotion Tasks

- Ramp
- Small door
- Regular door
- Gap
- Step field
- Stairs

CLIMBING OVER A GAP

WALKING OVER A STEP FIELD

CONCLUSIONS

- Hybrid driving-stepping locomotion combines advantages of wheels and legs
 - Omnidirectional driving on flat terrain
 - Overcoming height differences
- Two demonstrators: Momaro and Centauro
- 3D environment mapping
- Efficient coarse-to-fine locomotion planning
- Demonstrated a variety of locomotion tasks
- Valuable insights for further development
- Plan to demonstrate integrated missions

CENTAURO TEAM

