Autonomous Assistance Functions for Mobile Manipulation Robots and Micro Aerial Vehicles

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Direct Control vs. Autonomous Assistance

- Direct teleoperation offers a high degree of flexibility
- Requires special operator interfaces, good data connection, extensive operator training, and induces high cognitive load on the operator
- Not all DoFs can be mapped directly
- => Use autonomous assistance functions on all levels of control!

CENTAURO

[Klamt et al., Journal of Field Robotics 2020]

Mobile Manipulation Robot Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

[Schwarz et al. Journal of Field Robotics 2017]

DARPA Robotics Challenge

Allocentric 3D Mapping

 Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]

DLR SpaceBot Cup 2015

 Mobile manipulation in rough terrain

Autonomous Mission Execution

 3D mapping, localization, mission and navigation planning

 3D object perception and grasping

[Schwarz et al. Frontiers 2016]

Navigation Planning

- Costs from local height differences
- A* path planning

[Schwarz et al., Frontiers in Robotics and Al 2016]

Considering Robot Footprint

- Costs for individual wheel pairs from height differences
- Base costs
- Non-linear combination
 yields 3D (x, y, θ) cost map

3D Driving Planning (x, y, \theta): A*

16 driving directions

Orientation changes

=> Obstacle between wheels

UNIVERSIT

Making Steps

- If non-drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable

[Klamt and Behnke: IROS 2017]

Planning for a Challenging Scenario

[Klamt and Behnke: IROS 2017]

Centauro Robot

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

Hybrid Driving-Stepping Locomotion Planning: Abstraction

- Planning in the here and now
- Far-away details are abstracted away

Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level	Map Resolution		Map Features		Robot Representation		Action Semantics	
1		• 2.5 cm • 64 orient.	\land	• Height			\bigwedge	 Individual Foot Actions
2		• 5.0 cm • 32 orient.		HeightHeight Difference				• Foot Pair Actions
3	\bigvee	 10 cm 16 orient.		HeightHeight DifferenceTerrain Class	\bigvee			• Whole Robot Actions

[Klamt and Behnke, IROS 2017, ICRA 2018]

Learning Cost Functions of Abstract Representations

Planning problem

Abstraction CNN

Predict feasibility and costs of local detailed planning

Training data

- generated with random obstacles, walls, staircases
- costs and feasibility from detailed A*-planner
- ~250.000 tasks

Learned Cost Function: Abstraction Quality

CNN predicts feasibility and costs better than manually tuned geometric heuristics

a)	b)		c)	*
		> random	simulated	 real
	<i>feasibility</i> correct, man.tuned	79.27%	65.35%	69.77%
	Error($C_{a,man.tuned}$)	0.057	0.021	0.103
	<i>feasibility</i> correct, CNN	95.04%	96.69%	92.62%
	Error(C _{a.CNN})	0.027	0.013	0.081

Experiments – Planning Performance

Learned heuristics accelerates planning, without increasing path costs much

Heuristic preprocessing: 239 sec

Geometric heuristic

[Klamt and Behnke, ICRA 2019]

CENTAURO Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]

Object Detection

Adapted DenseCap approach for image-based object detection

CENTAURO Tools Data Set

129 frames, 6 object classes

https://www.centauro-project.eu/data_multimedia/tools_data

Detection Examples

Semantic Segmentation

- Adapted RefineNet approach [Lin et al. CVPR 2017]
- Synthesis of training images by capturing object views on turn table and inserting them into complex scenes

6D Object Pose Estimation

The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in two ways:

1. Generating data:

Automatic data capture, online mesh databases, scene synthesis

2. Improving generalization: Object-centered models, deformable registration, transfer learning, semi-supervised learning

Transfer of Manipulation Skills

Learning a Latent Shape Space

Non-rigid registration of instances and canonical model
 Principal component analysis of deformations

Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]

Shape-aware Non-rigid Registration

[Rodriguez and Behnke ICRA 2018]

Shape-aware Registration for Grasp Transfer

Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

[Pavlichenko et al., IROS 2017]

Grasping an Unknown Power Drill and Fastening Screws

CENTAURO: Complex Manipulation Tasks

[Klamt et al. RAM 2019]

Regrasping for Functional Grasp

- Direct functional grasps not always feasible
- Pick up object with support hand, such that it can be grasped in a functional way

[Pavlichenko et al. Humanoids 2019]
Regrasping Experiments

Part-based Non-rigid Object Registration

- Captures object shapes better
- Robust against outliers, noise and initial pose misalignment

Dense Convolutional 6D Object Pose Estimation

Extension of PoseCNN [Xiang et al. RSS 2018]

Dense prediction of object center and orientation, without cutting out

[Capellen et al., VISAPP 2020]

From Turntable Captures to Textured Meshes

Fused & textured result

Self-Supervised Surface Descriptor Learning

- Feature descriptor should be constant under different transformations, viewing angles, and environmental effects such as lighting changes
- Descriptor should be unique to facilitate matching across different frames or representations
- Learn dense features using a contrastive loss

Known correspondences

Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Descriptors as Texture on Object Surfaces

Learned feature channels used as textures for 3D object models
Used for 6D object pose estimation

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Abstract Object Registration

Compare rendered and actual scene in feature space

Adapt model pose by gradient descent

43 Behnke Humanoids 2019]

Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Learning from Synthetic Scenes

- Cluttered arrangements from 3D meshes
- Photorealistic scenes with randomized material and lighting including ground truth
- For online learning & render-and-compare
- Semantic segmentation on YCB Video Dataset
 - Close to real-data accuracy
 - Improves segmentation of real data

[Schwarz and Behnke, ICRA 2020]

SynPick: A Dataset for Dynamic Bin Picking Scene Understanding

Object arrangement and manipulation simulation using NVIDIA PhysX
Untargeted and targeted picking actions, as well as random moving

[Periyasamy et al. CASE 2021]

T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

- Extends DETR: End-to-end object detection with transformers [Carion et al. ECCV 2020]
- End-to-end differentiable pipeline for 6D object pose estimation

Encoder self-attention

Object detections and decoder attention

YoloPose: Multi-Object 6D Pose Estimation using Keypoint Regression

[Amini et al. IAS 2022]

Attention Maps

Encoder self-attention

Decoder cross-attention

Micro Aerial Vehicles: Hierarchical Navigation

Mission plan

Allocentric planning

Egocentric planning

Obstacle avoidance

[Droeschel et al. JFR 2016]

InventAIRy: Autonomous Navigation in a Warehouse

[Beul et al. RA-L 2018]

51

InventAIRy: Detected Tags in Shelf

[Beul et al. RA-L 2018]

Label Propagation for 3D Semantic Mapping

- Image-based semantic categorization, trained with Mapillary data set
- 3D fusion in semantic texture
- Backprojection of labels to other views

[Rosu et al., IJCV 2019]

3D Semantic Mapping

UNIVERSITÄT BON

German Rescue Robotics Center

Initial demonstrator

- Basis: DJI Matrice 600 Pro
- Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
- Tiltable sensor head

Current demonstrator

- Basis: DJI Matrice 210 v2
- Sensors: Ouster OS-0, FLIR AGX, 2× Intel RealSense D455
- IP43 water resistance

Modeling the Brandhaus Dortmund

Real-time LiDAR Odometry with Continuous-time Trajectory Optimization

- Simultaneous registration of multiple multiresolution surfel maps using Gaussian mixture models and temporally continuous B-spline
- Accelerated by sparse permutohedral voxel grids and adaptive choice of resolution
- Real-time onboard processing 16-20 Hz

Open-Source

https://github.com/ AIS-Bonn/lidar_mars_registration

[Quenzel and Behnke, IROS 2021]

UNIVERSI

3D LiDAR Mapping

DRZ Living Lab

Semantic Perception: LiDAR Segmentation

- LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid
- Hierarchical information aggregation through U-Net architecture
- LatticeNet is real-time capable and achieves excellent results in benchmarks

[Rosu et al., RSS 2020]

Semantic Fusion: 3D LiDAR Mapping

Minimax-Viking fire house

Semantic multiresolution surfel map

Categories:

- Building
- Persons
- Vehicles
- Fence •
- Vegetation ٠

Segmented point cloud

Semantic Fusion: Temporal LatticeNet

- Semantic segmentation of sequences of 3D point clouds
- Integration of recurrent connections
- Trained on three scans of SemanticKITTI
- Distinguishing moving from parking vehicles

Onboard Multimodal Semantic Fusion

- Real-time semantic segmentation and object detection (≈9Hz) with EdgeTPU / iGPU
 - SalsaNext for LiDAR
 - DeepLabv3 for RGB images
 - SSD MobileDet for Thermal/RGB
- Late-fusion for
 - Point cloud
 - Image segmentation

[Bultmann et al. ECMR 2021]

LiDAR-based Obstacle Avoidance

- Fast analytical collision check with 3D point cloud
- Planning of alternative trajectories if original trajectory causes collision
- Selection and execution of a collision-free alternative trajectory

Collision check

Generation of alternative trajectories

Selection based on distance to target and previous trajectory

Dynamic 3D Navigation Planning

- Positions and velocities in sparse local multiresolution grid
- Adaptation of movement primitives to grid
- Optimization of flight time and control costs
- 1 Hz replanning

Planning with Visibility Constraints

- Extra costs for flight through unmapped volumes
- Consideration of sensor frustum:
 - Coupling of vertical and horizontal motion
 - Preferred forward flight with limited rotational speed

Observation Pose Planning

- Planning of observation poses with line of sight to the target object despite occlusions
- Target objects are defined by position, line of sight and distance
- Optimization of observation poses with regard to visibility quality and accessibility

Initial observation pose

Optimized path

Autonomous Flight without GNSS

DRZ Dortmund

Exploration

- Definition of target area w.r.t. sattelite images or steet
- Simple exploration patterns (spirals, meanders, ...)
- Collision check
- TSP to determine segment sequence
- Continous replanning

Campus Poppelsdorf

Autonomous Exploration

DRZ Dortmund

Terrain Classification for Traversability

- Based on voxelfiltered aggragated point cloud
- Terrain classification based on local height differences in the robot ground robot footprints
- Categories: drivable, walkable, unpassable
- Reachability analysis

Aggregated colored point cloud

Local height differences

[Schleich et al., ICUAS 2021]

Conclusions

Developed capable robotic systems for disaster-response

- Centaur-like ground robots
- Micro aerial vehicles
- Challenges include
 - 4D semantic perception
 - High-dimensional motion planning
- Promising approaches
 - Prior knowledge (inductive bias)
 - Data generation (rendering, simulation)
 - Shared experience (fleet learning)
 - Shared autonomy (human-robot)

Challenges are HUGE, see Flooding in Erftstadt, Germany July 2021

