Perception and Planning for Cognitive Robots

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Many New Application Areas for Robots

- Self-driving cars
- Logistics
- Agriculture, mining
- Collaborative automation
- Personal assistance
- Space, search & rescue
- Healthcare
- Toys

Need more cognitive abilities!

Some of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Soccer

Domestic service

Mobile manipulation

Bin picking

Aerial inspection

RoboCup 2019 in Sydney

Visual Perception

- Encoder-decoder network
- Two outputs
 - Object detection
 - Semantic segmentation
- Location-dependent bias

- Detects objects that are hard to recognize for humans
- Robust to lighting changes

[Rodriguez et al. , 2019]

Our Domestic Service Robots

Dynamaid

- Cosero
- [Stückler et al.: Frontiers in Robotics and AI 2016]

- Size: 100-180 cm, weight: 30-35 kg
- 36 articulated joints
- PC, laser scanners, Kinect, microphone, ...
- 6

Cognitive Service Robot Cosero

3D Mapping by RGB-D SLAM

- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU

 Global optimization

Multi-camera SLAM

5cm

2,5cm

Learning and Tracking Object Models

Modeling of objects by RGB-D-SLAM

Real-time registration with current RGB-D frame

Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration

Transformation of Poses on Object

Derived from the deformation field

Grasp & Motion Skill Transfer

Behnke, ICRA2014]

UNIVERSITÄT

[Stückler,

Tool use: Bottle Opener

Tool tip perception

- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation

[Stückler, Behnke, Humanoids 2014]

Picking Sausage, Bimanual Transport

- Perception of tool tip and sausage
- Alignment with main axis of sausage

 Our team NimbRo won the RoboCup@Home League in three consecutive years

Bin Picking

Known objects in transport box

Matching of graphs of 2D and 3D shape primitives

Grasp and motion planning

Offline

Online

[Nieuwenhuisen et al.: ICRA 2013]

15

Hierarchical Object Discovery trough Motion Segmentation

Simultaneous object modeling and motion segmentation

 Inference of a segment hierarchy

[Stückler, Behnke: IJCAI 2013]

Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Compare color / depth of regions
- Size normalization
- 3D fusion through RGB-D SLAM
- Evaluation on NYU depth v2

UNIVERSITÄT

Deep Learning

 Learning layered representations

UNIVERSITÄT BO

[Schulz; Behnke, KI 2012]

Neural Abstraction Pyramid

Iterative Image Interpretation

- Interpret most obvious parts first
- Use partial interpretation as context to resolve local ambiguities

Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

Recursive computation is efficient for temporal integration

The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in two ways:

Generating data:

Automatic data capture, online mesh databases, scene synthesis

2. Improving generalization: Object-centered models, deformable registration, transfer learning, semi-supervised learning

Geometric and Semantic Features for RGB-D Object-class Segmentation

- New geometric feature: distance from wall
- Semantic features pretrained from ImageNet
- Both help significantly

RGB Truth DistWall OutWO OutWithDistWall

[Husain et al. RA-L 2017]

RGB-D Object Recognition and Pose Estimation

[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

Objects viewed from different elevation

Render canonical view

Colorization based on distance from center vertical

[Schwarz, Schulz, Behnke, ICRA2015]

Pretrained Features Disentangle Data

[Schwarz, Schulz, Behnke ICRA2015]

Recognition Accuracy

Improved both category and instance recognition

	Category Accuracy (%)		Instance Accuracy (%)	
Method	RGB	RGB-D	RGB	RGB-D
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9
Bo <i>et al.</i> [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8
PHOW[3]	80.2 ± 1.8		62.8	
Ours	83.1 ± 2.0	88.3 ± 1.5	92.0	94.1
Ours	$\textbf{83.1} \pm \textbf{2.0}$	89.4 ± 1.3	92.0	94.1

0.8

0.6

0.4

0.2

0

Confusion:

[Schwarz, Schulz,

Behnke, ICRA2015]

1: pitcher / coffe mug

2: peach / sponge

Object Capture and Scene Rendering

[Schwarz et al. ICRA 2018]

RefineNet for Semantic Segmentation

- Scene represented as feature hierarchy
- Corse-to-fine semantic segmentation
- Combine higher-level features with missing details

29

Semantic Segmentation Example

bronze_wire_cup conf: 0.749401 irish_spring_soap conf: 0.811500 playing_cards conf: 0.813761 w_aquarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467 paper_towels conf: 0.903645 white_facecloth conf: 0.895212 hand_weight conf: 0.928119 robots_everywhere conf: 0.930464

mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015

fiskars_scissors conf: 0.831069 ice_cube_tray conf: 0.976856

30

Amazon Robotics Challenge 2017

Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates

UNIVERSITÄT

From Turntable Captures to Textured Meshes

Self-Supervised Surface Descriptor Learning

- Feature descriptor should be constant under different transformations, viewing angles, and environmental effects such as lighting changes
- Descriptor should be unique to facilitate matching across different frames or representations
- Learn dense features using a contrastive loss

Known correspondences

Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Descriptors as Texture on Object Surfaces

- Learned feature channels used as textures for 3D object models
- Used for 6D object pose estimation

Abstract Object Registration

- Compare rendered and actual scene in feature space
- Adapt model pose by gradient descent

Registration Examples

Learning from Synthetic Scenes

- Cluttered arrangements from 3D meshes
- Photorealistic scenes with randomized material and lighting including ground truth
- For online learning & render-and-compare
- Semantic segmentation on YCB Video Dataset
 - Close to real-data accuracy
 - Improves segmentation of real data

[Schwarz et al. 2020 (submitted)]

Mobile Manipulation Robot Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

[Schwarz et al. Journal of Field Robotics 2017]

DARPA Robotics Challenge

Allocentric 3D Mapping

 Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]

DLR SpaceBot Cup 2015

Mobile manipulation in rough terrain

UNIVERSITÄT

Autonomous Mission Execution

 3D mapping, localization, mission and navigation planning

3D object perception and grasping

UNIVERSITÄT

[Schwarz et al. Frontiers 2016]

Navigation Planning

- Costs from local height differences
- A* path planning

[Schwarz et al., Frontiers in Robotics and Al 2016]

Considering Robot Footprint

- Costs for individual wheel pairs from height differences
- Base costs
- Non-linear combination yields
 3D (x, y, θ) cost map

3D Driving Planning (x, y, \theta): A*

16 driving directions

Orientation changes

=> Obstacle between wheels

Making Steps

- If not drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable

[Klamt and Behnke: IROS 2017]

Planning for Challenging Scenarios

[Klamt and Behnke: IROS 2017]

Centauro Robot

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level	Map Resolution		Map Features	Robot Representation		Action Semantics	
1		• 2.5 cm • 64 orient.	• Height			\wedge	• Individual Foot Actions
2		 5.0 cm 32 orient.	● Height ● Height Difference				• Foot Pair Actions
3	\bigvee	● 10 cm ● 16 orient.	HeightHeight DifferenceTerrain Class				• Whole Robot Actions

[Klamt and Behnke, IROS 2017, ICRA 2018]

Evaluation @ KHG: Locomotion Tasks

Transfer of Manipulation Skills

Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations

Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]

Shape-aware Non-rigid Registration

Partial view of novel instance

[Rodriguez and Behnke ICRA 2018]

Shape-aware Registration for Grasp Transfer

Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

[Pavlichenko et al., IROS 2017]

Grasping an Unknown Power Drill and Fastening Screws

Complex Manipulation Tasks

Regrasping

- Direct functional grasps not always feasible
- Pick up object with support hand, such that it can be grasped in a functional way

[Pavlichenko et al. Humanoids 2019]

Regrasping

Robot Experiments

Autonomous Flight Near Obstacles

Multimodal obstacle detection

3D laser scanner

Stereo cameras

[Droeschel et al.: Journal of Field Robotics, 2015]

Allocentric 3D Map

- Registration of egocentric maps
- Global optimization of registration error by GraphSLAM

[Droeschel et al. JFR 2016]

Hierarchical Navigation

Mission plan

Allocentric planning

Egocentric planning

Obstacle avoidance

Mapping on Demand Autonomous Flight to Planned View Poses

DJI Matrice 600 with Velodyne Puck & Cameras

InventAIRy: Autonomous Navigation in a Warehouse

InventAIRy: Detected Tags in Shelf

Navigation Planning with Visibility Constraints

- Velodyne Puck has limited vertical field-of-view (30°)
- Must be considered in navigation planning
- Only fly in directions that can be measured

Lidar field-of-view

Fastest path

Safe path

Navigation Planning with Visibility Constraints

Lidar-based SLAM from MAV

UNIVERSITÄT BO

Supporting Fire Fighters (A-DRZ)

- Added thermal camera
- Flight at Brandhaus Dortmund

UNIVERSITÄT

[Rosu et al. SSRR 2019]

Mesh-based 3D Modeling + Textures

- Model 3D geometry with mesh
- Appearance and temperature as high-resolution texture

Mesh geometry

RGB texture

Thermal texture

Mapping from 3D mesh to 2D texture

[Rosu et al. SSRR 2019]

Modeling the Brandhaus Dortmund

3D Semantic Mapping

- Image-based semantic categorization, trained with Mapillary data set
- 3D fusion in semantic texture
- Backprojection of labels to other views

[[]Rosu et al., IJCV 2019]

3D Semantic Mapping

[Rosu et al., IJCV 2019]

UNIVERSITÄT BONI

3D Semantic Map

Fast Point Cloud Segmentation Using Permutohedral Lattices

- Point cloud embedded into sparse permutohedral lattice
- Low memory footprint
- Fast 3D convolutions
- U-net semantic segmentation

Conclusions

- Developed capable robotic systems for challenging scenarios
 - Humanoid soccer
 - Domestic service
 - Bin picking
 - Disaster response
 - Aerial inspection
- Challenges include
 - Capable and affordable robot platforms
 - 4D semantic perception
 - High-dimensional motion planning
- Promising approaches
 - Shared autonomy
 - Instrumented environments

