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Many New Application Areas for Robots 

■ Self-driving cars 

■ Logistics 

■ Agriculture, mining 

■ Collaborative automation 

■ Personal assistance 

■ Space, search & rescue 

■ Healthcare 

■ Toys 

2 

Need more cognitive abilities! 
 



Some of our Cognitive Robots 
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Soccer Domestic service Mobile manipulation 

■ Equipped with numerous sensors and actuators 

■ Complex demonstration scenarios 

Aerial inspection Bin picking 



RoboCup 2019 in Sydney 
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Visual Perception 
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■ Encoder-decoder network  

■ Two outputs 

● Object detection 

● Semantic segmentation 

■ Location-dependent bias 

[Rodriguez et al. , 2019] 

■ Detects objects that are hard to 
recognize for humans 

■ Robust to lighting changes 



Our Domestic Service Robots 

6 

Dynamaid                                                          Cosero 

 Size: 100-180 cm, weight: 30-35 kg 
 36 articulated joints 
 PC, laser scanners, Kinect, microphone, … 

[Stückler et al.:  
 Frontiers in Robotics  
 and AI 2016] 



Cognitive Service Robot Cosero 
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3D Mapping by RGB-D SLAM 

■ Modelling of shape and color distributions in voxels 

■ Local multiresolution 

■ Efficient registration  
of views on CPU 

■ Global  
optimization 
 

 

 

■ Multi-camera SLAM 
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[Stückler, Behnke:  

Journal of Visual Communication  

and Image Representation 2013] 

2,5cm 

[Stoucken] 

5cm 



Learning and Tracking Object Models 

■ Modeling of objects by RGB-D-SLAM 

 

 

 

 

■ Real-time registration with current RGB-D frame 
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Deformable RGB-D-Registration 

■ Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010] 

■ Multiresolution Surfel Map allows real-time registration 
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Transformation of Poses on Object 

■ Derived from the deformation field 
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[Stückler, Behnke, ICRA2014] 



Grasp & Motion Skill Transfer 
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[Stückler,  
 Behnke, 
 ICRA2014] 



Tool use: Bottle Opener  

■ Tool tip perception 
 
 
 
 
 

■ Extension of arm kinematics 

■ Perception of crown cap 

■ Motion adaptation 
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[Stückler, Behnke, Humanoids 2014] 



Picking Sausage, Bimanual Transport 

■ Perception of tool tip 
and sausage 
 

■ Alignment with main 
axis of sausage 
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 Our team NimbRo won the 
RoboCup@Home League in three 
consecutive years 



■ Known objects in  
transport box 

■ Matching of graphs of 2D and 3D shape primitives 

 

 

■ Grasp and motion planning  

Bin Picking 
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3D            2D 

Offline                      Online 

[Nieuwenhuisen et al.: ICRA 2013] 



Hierarchical Object Discovery trough Motion Segmentation 

■ Simultaneous object modeling and motion segmentation 

 
 
 

 

■ Inference of a 
segment 
hierarchy 
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[Stückler, Behnke: IJCAI 2013] 



Semantic Mapping 

■ Pixel-wise classification of RGB-D images 
by random forests 

■ Compare color / depth of regions 

■ Size normalization 

■ 3D fusion through RGB-D SLAM 

■ Evaluation on NYU depth v2 
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Accuracy in % Ø Classes Ø Pixels 

Silberman et al. 2012 59,6 58,6 

Couprie et al. 2013 63,5 64,5 

Random forest 65,0 68,1 

3D-Fusion 66,8 

[Stückler,  

 Biresev,  

 Behnke:  

 IROS 2012] 

Ground truth 

 

 

 

Segmentation 



Deep Learning  

■ Learning 
layered 
represen- 
tations 
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[Schulz; 
 Behnke,  
 KI 2012] 



Neural Abstraction Pyramid  
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- Grouping  - Competition  - Completion 

- Data-driven 
- Analysis 
- Feature extraction 

- Model-driven 
- Synthesis 
- Feature expansion 

Signals 

Abstract features 

[Behnke, Rojas, IJCNN 1998] 
[Behnke, LNCS 2766, 2003] 
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Iterative Image Interpretation 

■ Interpret most obvious parts first 

■ Use partial interpretation as context to resolve local ambiguities 
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Neural Abstraction Pyramid for  
RGB-D Video Object-class Segmentation 

■ Recursive computation is efficient for temporal integration 
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Neural Abstraction Pyramid 

[Pavel, Schulz, Behnke, Neural Networks 2017] 



The Data Problem 

■ Deep Learning in robotics (still) suffers from shortage of available examples 

■ We address this problem in two ways: 

1. Generating data: 
Automatic data capture,  
online mesh databases,  
scene synthesis 
 

2. Improving generalization: 
Object-centered models, 
deformable registration, 
transfer learning,  
semi-supervised learning 
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Geometric and Semantic Features for RGB-D Object-class 
Segmentation 

■ New geometric feature:  
distance from wall 

■ Semantic features pretrained 
from ImageNet  

■ Both help significantly 
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[Husain et al. RA-L 2017] RGB        Truth       DistWall   OutWO   OutWithDistWall 



RGB-D Object Recognition and Pose Estimation 
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[Schwarz, Schulz, Behnke, ICRA2015] 



Canonical View, Colorization 

■ Objects viewed from different elevation 

■ Render canonical view 
 
 
 

■ Colorization based on distance from center vertical 

25 [Schwarz, Schulz, Behnke, ICRA2015] 



Pretrained Features Disentangle Data 

■ t-SNE 
embedding 
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[Schwarz, Schulz,  
 Behnke ICRA2015] 



Recognition Accuracy 

■ Improved both category and instance recognition 
 

 
 
 
 

■ Confusion:  
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1:    pitcher     /    coffe mug                2:    peach      /   sponge  

[Schwarz, Schulz,  
 Behnke, ICRA2015] 



Object Capture and Scene Rendering 
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■ Turntable + DLSR camera  

[Schwarz et al. ICRA 2018] 

■ Rendered scenes 



RefineNet for Semantic Segmentation 
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■ Scene represented as 
feature hierarchy 

■ Corse-to-fine semantic 
segmentation 

■ Combine higher-level 
features with missing 
details 

 

[Lin et al. CVPR 2017] 



Semantic Segmentation Example 

30 [Schwarz et al. ICRA 2018] 



Amazon Robotics Challenge 2017 
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Object Pose Estimation 

■ Cut out individual 
segments 

■ Use upper layer of 
RefineNet as input 

■ Predict pose 
coordinates 
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Input 

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018] 

Predicted pose 



From Turntable Captures to Textured Meshes 
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Fused & textured result 



Self-Supervised Surface Descriptor Learning 

■ Feature descriptor should be constant under different transformations, viewing 
angles, and environmental effects such as lighting changes 

■ Descriptor should be unique to facilitate matching across different frames or 
representations 

■ Learn dense features using a contrastive loss 
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Known correspondences Learned features 

[Periyasamy, Schwarz, Behnke Humanoids 2019] 



Descriptors as Texture on Object Surfaces  

■ Learned feature channels used as textures for 3D object models 

■ Used for 6D object pose estimation 
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Abstract Object Registration 

■ Compare rendered and actual scene in feature space 

■ Adapt model pose by gradient descent  
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Registration Examples 
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Learning from Synthetic Scenes 

■ Cluttered arrangements from 3D meshes 

■ Photorealistic scenes with randomized  
material and lighting including ground truth 

■ For online learning & render-and-compare 

■ Semantic segmentation on YCB Video Dataset 

● Close to real-data accuracy 

● Improves segmentation of real data 
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[Schwarz et al. 2020 (submitted)] 



Mobile Manipulation  
Robot Momaro 

■ Four compliant legs ending in 
pairs of steerable wheels 

■ Anthropomorphic upper body 

■ Sensor head 

● 3D laser scanner 

● IMU, cameras 
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[Schwarz et al. Journal of  Field Robotics 2017] 



DARPA Robotics Challenge 
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Allocentric 3D Mapping 

■ Registration of egocentric maps 
by graph optimization 
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[Droeschel et al., Robotics and  

  Autonomous Systems 2017] 



DLR SpaceBot Cup 2015 

■ Mobile manipulation in rough terrain 
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[Schwarz et al., Frontiers on   

 Robotics and AI 2016] 



DLR SPACEBOT CAMP 2015 
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Autonomous Mission Execution 

■ 3D mapping,  
localization, 
mission and 
navigation 
planning 
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[Schwarz et al. Frontiers 2016] 

■3D object 
perception 
and grasping 



Navigation 
Planning 

■ Costs from local height 
differences 

■ A* path planning 
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[Schwarz et al., Frontiers 

in Robotics and AI 2016] 



Considering Robot  
Footprint 

■ Costs for individual wheel pairs 
from height differences 

■ Base costs 

■ Non-linear combination yields  
3D (x, y, θ) cost map 
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Scene                                 Wheel costs 

Base costs                           Combined [Klamt and Behnke, IROS 2017] 



3D Driving Planning (x, y, θ): A* 

■ 16 driving directions 

 

 

 
■ Orientation changes 

 

 
 
=> Obstacle between wheels 
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Costs 

Height 

[Klamt and Behnke, IROS 2017] 



Making Steps 

■ If not drivable obstacle in front of 
a wheel 

■ Step landing must be drivable 

■ Support leg positions must be 
drivable 

 

48 

[Klamt and Behnke: IROS 2017] 
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[Klamt and Behnke: IROS 2017] 



Centauro Robot 
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[Tsagarakis et al., IIT 2017] 

 Serial elastic actuators 

 42 main DoFs 

 Schunk hand 

 3D laser 

 RGB-D camera 

 Color cameras 

 Two GPU PCs 



Hybrid Driving-Stepping Locomotion Planning: Abstraction 
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[Klamt and Behnke,  
 IROS 2017, ICRA 2018] 



Evaluation @ KHG: Locomotion Tasks 

52 [Klamt et al. RAM 2019] 



Transfer of Manipulation Skills 
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Knowledge 
Transfer 



Learning a Latent Shape Space 

■ Non-rigid registration of instances and canonical model 

■ Principal component analysis of deformations  
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Interpolation in Shape Space 

55 [Rodriguez and Behnke ICRA 2018] 



Shape-aware Non-rigid Registration 
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■ Partial view of novel instance 
■ Deformed canonical model 

[Rodriguez and Behnke ICRA 2018] 



Shape-aware Registration for Grasp Transfer 
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■ Full point cloud 

 

■ Partial view  

 



Constrained Trajectory Optimization: 

■ Collision avoidance 

■ Joint limits 

■ Time minimization 

■ Torque optimization 

Collision-aware Motion Generation 

58 [Pavlichenko et al., IROS 2017] 



Grasping an Unknown Power Drill and Fastening Screws 
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Complex Manipulation Tasks 

60 [Klamt et al. RAM 2019] 



Regrasping 

■ Direct functional grasps not always feasible 

■ Pick up object with support hand, such that it can be grasped in a functional way 

 

 

61 [Pavlichenko et al. Humanoids 2019] 



Regrasping 

62 [Pavlichenko et al. Humanoids 2019] 



Autonomous Flight Near Obstacles 

Multimodal obstacle detection 
■ 3D laser scanner 

 
 

 

■ Stereo cameras 
 
 
 

 

■ Ultrasound 
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[Droeschel et al.: Journal of  Field Robotics, 2015] 



Allocentric 3D Map 

■ Registration of egocentric maps 

■ Global optimization of registration error by GraphSLAM 
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[Droeschel et al. JFR 2016] 



Hierarchical Navigation 
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Obstacle avoidance 

Egocentric planning 

Allocentric planning 

Mission plan 

Request 

Speed 

Trajectory 

Semantic 
map 

Allocentric 
map 

Egocentric 
map 

User 

Mission planning 

Allocentric planning 

Egocentric planning 

Copter 

Obstacle 
map 

Onboard computer 

Operator station 

20 Hz 

2 Hz 

0.2 Hz 

<0.02 Hz 

Obstacle avoidance 

Allocentr. plan 

Observation poses 
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EUROC CHALLENGE 3: CHIMNEYSPECTOR 
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DJI Matrice 600 with Velodyne Puck & Cameras 
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InventAIRy: Autonomous Navigation in a Warehouse 
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InventAIRy: Detected Tags in Shelf 
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Navigation Planning with Visibility Constraints 

■ Velodyne Puck has limited vertical field-of-view (30°) 

■ Must be considered in navigation planning 

■ Only fly in directions that can be measured 
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Lidar field-of-view Fastest path Safe path 

[Nieuwenhuisen and Behnke, ICRA 2019] 



Navigation Planning with Visibility Constraints 
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Lidar-based SLAM from MAV 

 

73 
[Droeschel & Behnke, ICRA 2018] 



Supporting Fire Fighters (A-DRZ) 

■ Added thermal camera 

■ Flight at Brandhaus Dortmund 

74 
[Rosu et al. SSRR 2019] 



Mesh-based 3D Modeling + Textures 

■ Model 3D geometry with mesh 

■ Appearance and temperature as high-resolution texture 

 

 

 

 

■ Mapping from 3D mesh to 2D texture 
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Mesh geometry Thermal texture RGB texture 

Texture mapping 

[Rosu et al. SSRR 2019] 



Modeling the Brandhaus Dortmund 

 

76 [Rosu et al. SSRR 2019] 



3D Semantic Mapping 

■ Image-based semantic categorization, trained with Mapillary data set  

■ 3D fusion in semantic texture 

■ Backprojection of labels to other views 

77 
[Rosu et al., IJCV 2019] 

           initial fusion                  feedback      improved interpretation 



3D Semantic Mapping 
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[Rosu et al., IJCV 2019] 



3D Semantic Map 
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[Rosu et al., under review] 



Fast Point Cloud Segmentation Using Permutohedral Lattices 

■ Point cloud embedded into  
sparse permutohedral lattice 

■ Low memory footprint 

■ Fast 3D convolutions 

■ U-net semantic segmentation 

■ Good results on three data sets 
  

80 
SemanticKITTI 

ShapeNet 

ScanNet 

[Rosu et al. 2020 (submitted) ] 



Conclusions 

■ Developed capable robotic systems for challenging scenarios 
● Humanoid soccer 
● Domestic service 
● Bin picking 
● Disaster response 
● Aerial inspection 

■ Challenges include 
● Capable and affordable robot platforms 
● 4D semantic perception 
● High-dimensional motion planning 

■ Promising approaches 

● Shared autonomy 

● Instrumented environments 
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