

3D MAPPING AND PLANNING FOR AUTONOMOUS NAVIGATION OF MICRO AERIAL VEHICLES IN COMPLEX GNSS-DENIED ENVIRONMENTS

Radu Alexandru Rosu on behalf of Sven Behnke

University of Bonn,Germany Computer Science Institute VI Autonomous Intelligent Systems

AUTONOMOUS BEHAVIOUR

- Mapping
 - Map of the scene
 - Semantic understanding

AUTONOMOUS BEHAVIOUR

- Mapping
 - Map of the scene
 - Semantic understanding
- Planning
 - Collision avoidance
 - Time-optimal control

SEMANTIC TEXTURE

- Scene as lightweight mesh
- Semantic and RGB as high-res texture
- Iterative self-improvement through Label Propagation

SEMANTIC TEXTURE

- Probabilistic fusion
- High resolution texture
- 66 semantic classes

MAVS FOR FIREFIGHTING

- Fast reconnaissance
- Detect people or latent fires
- Multi drone communication

IMAGE CORRECTION

• Image intensities change over time

Vignetting

Exposure changes

- Image intensities change over time
- Estimate vignetting, camera response and exposure changes

IMAGE CORRECTION

- Image intensities change over time
- Estimate vignetting, camera response and exposure changes
- Thin plate spline for interpolation of correction factors

Original image

Correction factor

Corrected image

• Dynamic objects need to be treated separately

DYNAMIC OBJECTS

- Dynamic objects need to be treated separately
- Track the objects

DYNAMIC OBJECTS

- Dynamic objects need to be treated separately
- Track the objects
- Real-time filtering

PLANNING UNDER CONSTRAINTS

- Sensors have blindspots
- Planning needs to take them into consideration for safety
- Modified A* and CHOMP trajectory optimization

Lidar field of view

Fastest trajectory

With visibility constraints

Planned path with visibility constraints

- Fast trajectory generation
- Less than 6ms per trajectory
- Avoid collision with dynamic objects

Thank you for your attention!