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Many New Application Areas for Robots

■ Self-driving cars

■ Logistics

■ Agriculture, mining

■ Collaborative automation

■ Personal assistance

■ Space, search & rescue

■ Healthcare

■ Toys
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Need more cognitive abilities!



Autonomous Intelligent Systems

■ Established 2008

■ Research in Cognitive Robotics and Computer Vision



Some of our Cognitive Robots
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Soccer Domestic service Mobile manipulation

■ Equipped with numerous sensors and actuators

■ Complex demonstration scenarios

Aerial inspectionBin picking



Some more of our Cognitive Robots
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Phenotyping TelepresenceHuman-robot collaboration

Rescue



RoboCup 2019 in Sydney
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Transfer Learning for Visual Perception
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■ Encoder-decoder network 

■ Two outputs

● Object detection

● Semantic segmentation

■ Location-dependent bias

[Rodriguez et al. 2019]

■ Detects objects that are hard to 
recognize for humans

■ Robust to lighting changes



Learning Omnidirectional Gait from Scratch

8 [Rodriguez and Behnke, ICRA 2021]

■ State includes joint positions and velocities, robot orientation, robot speed

■ Actions are increments of joint positions

■ Simple reward structure
● Velocity tracking
● Pose regularization
● Not falling
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■ Start with small velocities

■ Increase range of sampled velocities

Learning Curriculum

[Rodriguez and Behnke, ICRA 2021]



10 [Rodriguez and Behnke, ICRA 2021]

Learned Omnidirectional Gait

■ Target velocity can be changed continuously



Mapless Humanoid Navigation

11 [Brandenburger et al. IROS 2021]

■ Visual (RGB images) and nonvisual observations to learn a control policy and an 
environment dynamics model, extends Dreamer [Hafner et al. ICLR 2020]

■ Anticipate terminal states of success and failure

InferenceTraining



Mapless Humanoid Navigation

12 [Brandenburger et al. IROS 2021]



Our Domestic Service Robots
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Dynamaid                                                          Cosero

◼ Size: 100-180 cm, weight: 30-35 kg
◼ 36 articulated joints
◼ PC, laser scanners, Kinect, microphone, …

[Stückler et al.: 
Frontiers in Robotics 
and AI 2016]



Cognitive Service Robot Cosero
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3D Mapping by RGB-D SLAM

■ Modelling of shape and color distributions in voxels

■ Local multiresolution

■ Efficient registration
of views on CPU

■ Global 
optimization

■ Multi-camera SLAM

15

[Stückler, Behnke: 

Journal of Visual Communication 

and Image Representation 2013]

2,5cm

[Stoucken]

5cm



Learning and Tracking Object Models

■ Modeling of objects by RGB-D-SLAM

■ Real-time registration with current RGB-D frame
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Deformable RGB-D-Registration

■ Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]

■ Multiresolution Surfel Map allows real-time registration
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Transformation of Poses on Object

■ Derived from the deformation field

18

[Stückler, Behnke, ICRA2014]



Grasp & Motion Skill Transfer

19

[Stückler, 
Behnke,
ICRA2014]



Tool use: Bottle Opener 

■ Tool tip perception

■ Extension of arm kinematics

■ Perception of crown cap

■ Motion adaptation

20

[Stückler, Behnke, Humanoids 2014]



Picking Sausage, Bimanual Transport

■ Perception of tool tip 
and sausage

■ Alignment with main 
axis of sausage

21

◼ Our team NimbRo won the 
RoboCup@Home League in three 
consecutive years



Hierarchical Object Discovery trough Motion Segmentation

■ Simultaneous object modeling and motion segmentation

■ Inference of a
segment
hierarchy

22

[Stückler, Behnke: IJCAI 2013]



Semantic Mapping

■ Pixel-wise classification of RGB-D images 
by random forests

■ Compare color / depth of regions

■ Size normalization

■ 3D fusion through RGB-D SLAM

■ Evaluation on NYU depth v2

23

Accuracy in % Ø Classes Ø Pixels

Silberman et al. 2012 59,6 58,6

Couprie et al. 2013 63,5 64,5

Random forest 65,0 68,1

3D-Fusion 66,8

[Stückler, 

Biresev, 

Behnke: 

IROS 2012]

Ground truth

Segmentation



Deep Learning 

■ Learning
layered
represen-
tations

24

[Schulz;
Behnke, 
KI 2012]



Neural Abstraction Pyramid 
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- Grouping  - Competition  - Completion

- Data-driven
- Analysis
- Feature extraction

- Model-driven
- Synthesis
- Feature expansion

Signals

Abstract features

[Behnke, Rojas, IJCNN 1998]
[Behnke, LNCS 2766, 2003]



Iterative Image Interpretation

■ Interpret most obvious parts first

■ Use partial interpretation as context to resolve local ambiguities
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Neural Abstraction Pyramid for
Object-class Segmentation of RGB-D Video 

■ Recursive computation is efficient for temporal integration

27

Neural Abstraction Pyramid

[Pavel, Schulz, Behnke, Neural Networks 2017]



The Data Problem

■ Deep Learning in robotics (still) suffers from shortage of available examples

■ We address this problem in two ways:

1. Generating data:
Automatic data capture, 
online mesh databases, 
scene synthesis

2. Improving generalization:
Object-centered models,
deformable registration,
transfer learning, 
semi-supervised learning
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RGB-D Object Recognition and Pose Estimation

29

[Schwarz, Schulz, Behnke, ICRA2015]

■ Transfer learning from large-scale data sets



Canonical View, Colorization

■ Objects viewed from different elevation

■ Render canonical view

■ Colorization based on distance from center vertical

30 [Schwarz, Schulz, Behnke, ICRA2015]



Pretrained Features Disentangle Data

■ t-SNE
embedding

31

[Schwarz, Schulz, 
Behnke ICRA2015]



Recognition Accuracy

■ Improved both category and instance recognition

■ Confusion: 

32

1:    pitcher /    coffe mug 2:    peach      /   sponge

[Schwarz, Schulz, 
Behnke, ICRA2015]



Amazon Robotics Challenge

■ Storing and picking of items

■ Dual-arm robotic system

33

[Amazon]
[Schwarz et al. ICRA 2018]



Object Capture and Scene Rendering
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■ Turntable + DLSR camera 

[Schwarz et al. ICRA 2018]

■ Insertion in complex annotated scenes



RefineNet for Semantic Segmentation
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■ Scene represented as 
feature hierarchy

■ Corse-to-fine semantic 
segmentation

■ Combine higher-level 
features with missing 
details

[Lin et al. CVPR 2017]



Semantic Segmentation Example

36 [Schwarz et al. ICRA 2018]



Amazon Robotics Challenge 2017
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Object Pose Estimation

■ Cut out individual 
segments

■ Use upper layer of 
RefineNet as input

■ Predict pose 
coordinates

38

Input

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]

Predicted pose



Dense Convolutional 6D Object Pose Estimation

■ Extension of PoseCNN [Xiang et al. RSS 2018]

■ Dense prediction of object center and orientation, without cutting out

39 [Capellen et al., VISAPP 2020]

Predictiion error

Orientation norm



T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

■ Extends DETR: End-to-end object detection with transformers [Carion et al. ECCV 2020]

■ End-to-end differentiable pipeline for 6D object pose estimation

40 [Amini et al. GCPR 2021]

Encoder self-attention Object detections and decoder attention



Multi-Object 6D Pose Estimation using Keypoint Regression

41 [Amini et al. under review]



From Turntable Captures to Textured Meshes

42
Fused & textured result



Self-Supervised Surface Descriptor Learning

■ Feature descriptor should be constant under different transformations, viewing 
angles, and environmental effects such as lighting changes

■ Descriptor should be unique to facilitate matching across different frames or 
representations

■ Learn dense features using a contrastive loss

43

Known correspondences Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019]



Descriptors as Texture on Object Surfaces 

■ Learned feature channels used as textures for 3D object models

■ Used for 6D object pose estimation

44 [Periyasamy, Schwarz, Behnke Humanoids 2019]



Abstract Object Registration

■ Compare rendered and actual scene in feature space

■ Adapt model pose by gradient descent 

45

[Periyasamy, Schwarz, 
Behnke Humanoids 2019]
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Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]



Learning from Synthetic Scenes

■ Cluttered arrangements from 3D meshes

■ Photorealistic scenes with randomized 
material and lighting including ground truth

■ For online learning & render-and-compare

■ Semantic segmentation on YCB Video Dataset

● Close to real-data accuracy

● Improves segmentation of real data

47

[Schwarz and Behnke, ICRA 2020]



SynPick: A Dataset for Dynamic Bin Picking Scene Understanding

■ Object arrangement and manipulation simulation using NVIDIA PhysX

■ Untargeted and targeted picking actions, as well as random moving actions

48 [Periyasamy et al. CASE 2021]         



Mobile Manipulation 
Robot Momaro

■ Four compliant legs ending in 
pairs of steerable wheels

■ Anthropomorphic upper body

■ Sensor head

● 3D laser scanner

● IMU, cameras

49

[Schwarz et al. Journal of  Field Robotics 2017]



DARPA Robotics Challenge

50



Allocentric 3D Mapping

■ Registration of egocentric maps 
by graph optimization

51

[Droeschel et al., Robotics and 

Autonomous Systems 2017]



DLR SpaceBot Cup 2015

■ Mobile manipulation in rough terrain

52

[Schwarz et al., Frontiers on  

Robotics and AI 2016]



DLR SPACEBOT CAMP 2015

Sven Behnke: Semantic Environment Perception 53



Autonomous Mission Execution

■ 3D mapping, 
localization,
mission and
navigation 
planning

54
[Schwarz et al. Frontiers 2016]

■3D object 
perception 
and grasping



Navigation
Planning

■ Costs from local height 
differences

■ A* path planning

55

[Schwarz et al., Frontiers 

in Robotics and AI 2016]



Considering Robot 
Footprint

■ Costs for individual wheel pairs 
from height differences

■ Base costs

■ Non-linear combination yields 
3D (x, y, θ) cost map

56

Scene                                 Wheel costs

Base costs                           Combined[Klamt and Behnke, IROS 2017]



3D Driving Planning (x, y, θ): A*

■ 16 driving directions

■ Orientation changes

=> Obstacle between wheels

57

Costs

Height

[Klamt and Behnke, IROS 2017]



Making Steps

■ If non-drivable obstacle in front of 
a wheel

■ Step landing must be drivable

■ Support leg positions must be 
drivable

58

[Klamt and Behnke: IROS 2017]



59Sven Behnke: Semantic Environment Perception[Klamt and Behnke: IROS 2017]

Planning for a Challenging Scenario



Centauro Robot

60

[Tsagarakis et al., IIT 2017]

▪ Serial elastic actuators

▪ 42 main DoFs

▪ Schunk hand

▪ 3D laser

▪ RGB-D camera

▪ Color cameras

▪ Two GPU PCs



Hybrid Driving-Stepping Locomotion Planning: Abstraction

■ Planning in the here and now

■ Far-away details are abstracted away



Hybrid Driving-Stepping Locomotion Planning: Abstraction

62

[Klamt and Behnke, 
IROS 2017, ICRA 2018]



Learning Cost Functions of Abstract Representations

Cost function

[Klamt and Behnke,  ICRA 2019]



Abstraction CNN

■ Predict feasibility and costs of local detailed planning

/ x

xx.yy

Training data

• generated with random obstacles, walls, staircases

• costs and feasibility from detailed A*-planner
• ~250.000 tasks

[Klamt and Behnke,  ICRA 2019]



Learned Cost Function: Abstraction Quality

■ CNN predicts feasibility and costs better than manually tuned geometric 
heuristics 

[Klamt and Behnke,  ICRA 2019]



Experiments – Planning Performance

■ Learned heuristics accelerates planning, 
without increasing path costs much

Heuristic preprocessing: 239 sec

Geometric heuristic

Abstract representation

heuristic

[Klamt and Behnke,  ICRA 2019]



CENTAURO Evaluation @ KHG: Locomotion Tasks

67 [Klamt et al. RAM 2019]



Transfer of Manipulation Skills

68

Knowledge 
Transfer



Learning a Latent Shape Space

■ Non-rigid registration of instances and canonical model

■ Principal component analysis of deformations 

69



Interpolation in Shape Space

70 [Rodriguez and Behnke ICRA 2018]



Shape-aware Non-rigid Registration
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■ Partial view of novel instance
■ Deformed canonical model

[Rodriguez and Behnke ICRA 2018]



Shape-aware Registration for Grasp Transfer

72

■ Full point cloud ■ Partial view 



Constrained Trajectory Optimization:

■ Collision avoidance

■ Joint limits

■ Time minimization

■ Torque optimization

Collision-aware Motion Generation

73 [Pavlichenko et al., IROS 2017]



Grasping an Unknown Power Drill and Fastening Screws

74



CENTAURO: Complex Manipulation Tasks

75 [Klamt et al. RAM 2019]



Regrasping for Functional Grasp

■ Direct functional grasps not always feasible

■ Pick up object with support hand, such that it can be grasped in a functional way

76 [Pavlichenko et al. Humanoids 2019]



77 [Pavlichenko et al. Humanoids 2019]

Regrasping Experiments



■ Two-armed avatar robot designed for 
teleoperation with immersive visualization & 
force feedback

■ Connected to operator station with HMD, 
exoskeleton and locomotion interface

78

NimbRo Avatar

[Schwarz et al. IROS 2021]



Team NimbRo Semifinal Submission

[Schwarz et al. IROS 2021]
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NimbRo Avatar – Applications

[Schwarz et al. IROS 2021]



■ 4K stereo video stream
■ 6D head arm allows full head movement
■ Spherical rendering technique hides 

movement latencies

81

NimbRo Avatar – VR Visualization System

[Schwarz and Behnke Humanoids 2021]



■ Arm exoskeleton (Franka Emika Panda), F/T sensor (OnRobot HEX), hand 
exoskeleton (SenseGlove)

■ Avatar side: Arm + F/T sensor + Schunk SVH / SIH hand
■ Method provides force feedback for wrist & fingers
■ Avatar limit avoidance using predictive model to reduce latencies

82

NimbRo Avatar – Haptic Manipulation

[Lenz and Behnke ECMR 2021]



83 [Schwarz et al. IROS 2021]



Micro Aerial Vehicles: Hierarchical Navigation

84

Obstacle avoidance

Egocentric planning

Allocentric planning

Mission plan

Request

Speed

Trajectory

Semantic
map

Allocentric
map

Egocentric
map

User

Mission planning

Allocentric planning

Egocentric planning

Copter

Obstacle
map

Onboard computer

Operator station

20 Hz

2 Hz

0.2Hz

<0.02 Hz

Obstacle avoidance

Allocentr. plan

Observation poses

[Droeschel et al. JFR 2016]



InventAIRy: Autonomous Navigation in a Warehouse

85 [Beul et al. RA-L 2018]



InventAIRy: Detected Tags in Shelf

86 [Beul et al. RA-L 2018]



Label Propagation for 3D Semantic Mapping

■ Image-based semantic categorization, trained with Mapillary data set 

■ 3D fusion in semantic texture

■ Backprojection of labels to other views

87
[Rosu et al., IJCV 2019]

initial fusion feedback improved interpretation



3D Semantic Mapping

88
[Rosu et al., IJCV 2019]



German Rescue Robotics Center

• Basis: DJI Matrice 600 Pro
• Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
• Tiltable sensor head

Current demonstrator

• Basis: DJI Matrice 210 v2
• Sensors: Ouster OS-0, FLIR AGX, 2× Intel RealSense D455
• IP43 water resistance

Initial demonstrator



Supporting Fire Fighters (A-DRZ)

■ Added thermal camera

■ Flight at Brandhaus Dortmund

90
[Rosu et al. SSRR 2019]



Mesh-based 3D Modeling + Textures

■ Model 3D geometry with mesh

■ Appearance and temperature as high-resolution texture

■ Mapping from 3D mesh to 2D texture

91

Mesh geometry Thermal textureRGB texture

Texture mapping

[Rosu et al. SSRR 2019]



Modeling the Brandhaus Dortmund

92 [Rosu et al. SSRR 2019]



Multi-hypothesis Tracking of Fire Detections

■ Aggregation of egocentric fire detections to filtered allocentric fire hypotheses

■ Integration of 2D detections (direction vector) 
by ray-casting and of 3D detections

[Quenzel et al. ICUAS 2021]



Real-time LiDAR Odometry with Continuous-time Trajectory 
Optimization

■ Simultaneous registration of multiple 
multiresolution surfel maps using Gaussian mixture 
models and temporally continuous B-spline

■ Accelerated by sparse permutohedral voxel grids 
and adaptive choice 
of resolution

■ Real-time onboard
processing 16-20 Hz

■ Open-Source 
https://github.com/
AIS-Bonn/lidar_mars_registration

[Quenzel and Behnke, IROS 2021]



Minimax-Viking fire house

LiDAR Odometry

■ Sliding window keyframe approach for drift reduction

■ Scan fusion and moving the local map on the surfel level

[Quenzel and Behnke, IROS 2021]



3D LiDAR Mapping

96

DRZ Living Lab



3D LiDAR Mapping

▪ Local mapping 
with position 
prior

▪ GPS offset 
correction for 
improved 
localization

▪ Dedicated 
outdoor and 
indoor maps 
with seamless 
localization 
switching

MBZIRC 2020



Semantic Perception: LiDAR Segmentation

■ LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid

■ Hierarchical information aggregation through U-Net architecture

■ LatticeNet is real-time capable and achieves excellent results in benchmarks

[Rosu et al., RSS 2020]



Semantic Fusion: 3D LiDAR Mapping

Segmented point cloud

Categories:
• Building
• Floor
• Persons
• Vehicles
• Fence
• Vegetation

Minimax-Viking fire house

Semantic multiresolution surfel map



Semantic Fusion: Temporal LatticeNet

■ Semanic segmentation of sequences of 3D point clouds

■ Integration of recurrent connections

■ Trained on three scans of SemanticKITTI

■ Distinguishing moving from parking vehicles

Semantic multiresolution surfel map

[Rosu et al. Autonomous Robots 2021]

Categories:
• Street
• Moving Vehicle
• Parking Vehicle
• Vegetation



RGB image Semantic segmentation with overlaid detections at the DRZ 
integration sprint in Bad Oldesloe, Germany

Semantic Perception: Camera-based Segmentation + Detection

■ Pixel-wise semantic segmentation and object detection with Google Edge TPU

■ Detection of e.g. buildings, vegetation etc. (DeepLab v3 CNN with MobileNet v3 
Backbone)



Person detection in thermal 
images

Semantic segmentationRGB image

Semantic Perception: Detection of Persons and Vehicles

■ Detection of persons and vehicles in color and thermal images (SSD with 
MobileNet v3 backbone)

■ Runs on board computer with approx. 5 fps



Multi-hypothesis Tracker for Dynamic Objects

■ Multi-hypothesis tracker for combining detected objects from image and LiDAR

■ Segmentation of LiDAR scan into foreground and background with subsequent 
grouping of foreground segments of adjacent scan lines and person detection

■ 2D image detections + depth camera to derive a 3D detection hypothesis

■ Movement of individual instances can be predicted
[Razlaw et al., ICRA 2019]



Semantic Perception: Synthesis of Training Data

■ Identification of relevant object categories with DRZ partners IFR, FwDo and DFKI

■ Review of available data sets

■ Generation of synthetic training data with physics-based renderer EasyPBR

[Rosu and Behnke, GRAPP 2021]



Onboard Multimodal Semantic Fusion

■ Real-time semantic Segmentation and Object
detection (≈9Hz) with EdgeTPU / iGPU
● SalsaNext for LiDAR
● DeepLabv3 for RGB images
● SSD MobileDet for Thermal/RGB

■ Late-Fusion for
● Point cloud
● Image segmentation

105
[Bultmann et al. ECMR 2021]



Onboard Multimodal Semantic Fusion

■ Bayesian fusion of class probabilities in sparse voxel grid

106 [Bultmann et al. ECMR 2021]



Optimal Obstacle Avoidance Trajectories

■ Fast avoidance 
of immediately 
perceived 
obstacles 
(persons, birds, 
copters, ...)

■ Modeling of 
dynamic 
obstacles with 
assumption of 
constant speed

Optimale Ausweichtrajektorien um statische Hindernisse

[Beul and Behnke, IROS 2019]



LiDAR-based Obstacle Avoidance

■ Fast analytical collision check with 3D point cloud

■ Planning of alternative trajectories if original trajectory causes collision

■ Selection and execution of a collision-free alternative trajectory

[Beul and Behnke, SSRR 2020]

Collision check Generation of alternative 
trajectories

Selection based on distance to 
target and previous trajectory



Dynamic 3D Navigation Planning

■ Positions and 
velocities in 
sparse local 
multiresolution
grid

■ Adaptation of
movement 
primitives to 
grid

■ Optimization of
flight time and 
control costs

■ 1 Hz replanning 
[Schleich and Behnke, ICRA 2021]



Planning with Visibility Constraints

■ Extra costs for flight through 
unmapped volumes

■ Consideration of sensor frustum:

● Coupling of vertical and horizontal 
motion

● Preferred forward flight with limited 
rotational speed

Obstacle map

Initial trajectory Optimized trajectory



Observation Pose Planning

■ Planning of observation poses with line of sight to the target object despite 
occlusions

■ Target objects are defined by position, 
line of sight and distance

■ Optimization of observation poses with regard 
to visibility quality and accessibility

Initial observation pose Optimized path Top-down view



Autonomous Flight without GNSS

DRZ Dortmund



Autonomous Flight without GNSS for Disaster Examination

[Schleich et al., ICUAS 2021]



Exploration

■ Definition of target
area w.r.t. sattelite
images or steet

■ Simple exploration
patterns (spirals, 
meanders, …)

■ Collision check

■ TSP to determine
segment sequence

■ Continous
replanning

Campus Poppelsdorf



Autonomous Exploration

DRZ Dortmund



Terrain Classification for Traversability

■ Based on voxel-
filtered aggragated
point cloud

■ Terrain classification
based on local height
differences in the
robot ground robot 
footprints

■ Categories: drivable, 
walkable, unpassable

■ Reachability analysis

[Schleich et al., ICUAS 2021]
Terrain category Reachability

Local height differencesAggregated colored point cloud



Conclusions

■ Developed capable robotic systems for challenging scenarios
● Humanoid soccer
● Domestic service
● Bin picking
● Disaster response
● Aerial robots

■ Challenges include
● 4D semantic perception
● High-dimensional motion planning

■ Promising approaches
● Prior knowledge (inductive bias)
● Shared experience (fleet learning)
● Shared autonomy (human-robot)
● Instrumented environments
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