Perception, Planning, and Learning for Cognitive Robots

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Many New Application Areas for Robots

- Self-driving cars
- Logistics
- Agriculture, mining
- Collaborative automation
- Personal assistance
- Space, search & rescue
- Healthcare
- Toys

Need more cognitive abilities!

Autonomous Intelligent Systems

- Established 2008
- Research in Cognitive Robotics and Computer Vision

Some of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Soccer

Domestic service

Mobile manipulation

Bin picking

Some more of our Cognitive Robots

Rescue

Phenotyping

Human-robot collaboration

Telepresence

RoboCup 2019 in Sydney

Transfer Learning for Visual Perception

- Encoder-decoder network
- Two outputs
 - Object detection
 - Semantic segmentation
- Location-dependent bias

- Detects objects that are hard to recognize for humans
- Robust to lighting changes

[Rodriguez et al. 2019]

Learning Omnidirectional Gait from Scratch

- State includes joint positions and velocities, robot orientation, robot speed
- Actions are increments of joint positions
- Simple reward structure
 - Velocity tracking
 - Pose regularization
 - Not falling

Learning Curriculum

- Start with small velocities
- Increase range of sampled velocities

UNIVERSITÄT

Learned Omnidirectional Gait

Target velocity can be changed continuously

Our locomotion controller is able to: Walk Forward

$$v_x = 0.6 \text{ m/s}$$

 $v_y = 0.0 \text{ m/s}$
 $\omega_z = 0.0 \text{ rad/s}$

Mapless Humanoid Navigation

- Visual (RGB images) and nonvisual observations to learn a control policy and an environment dynamics model, extends Dreamer [Hafner et al. ICLR 2020]
- Anticipate terminal states of success and failure

Inference

Mapless Humanoid Navigation

Our Domestic Service Robots

Dynamaid

Cosero

- Size: 100-180 cm, weight: 30-35 kg
- 36 articulated joints
- PC, laser scanners, Kinect, microphone, ...

[Stückler et al.: Frontiers in Robotics and AI 2016]

Cognitive Service Robot Cosero

3D Mapping by RGB-D SLAM

- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU

 Global optimization

Multi-camera SLAM

[Stoucken]

5cm

2,5cm

Learning and Tracking Object Models

Modeling of objects by RGB-D-SLAM

Real-time registration with current RGB-D frame

Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration

Transformation of Poses on Object

Derived from the deformation field

Grasp & Motion Skill Transfer

UNIVERSITÄT

Behnke,

ICRA2014]

Tool use: Bottle Opener

Tool tip perception

- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation

[Stückler, Behnke, Humanoids 2014]

Picking Sausage, Bimanual Transport

- Perception of tool tip and sausage
- Alignment with main axis of sausage

 Our team NimbRo won the RoboCup@Home League in three consecutive years

Hierarchical Object Discovery trough Motion Segmentation

Simultaneous object modeling and motion segmentation

 Inference of a segment hierarchy

[Stückler, Behnke: IJCAI 2013]

Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Compare color / depth of regions
- Size normalization
- 3D fusion through RGB-D SLAM
- Evaluation on NYU depth v2

UNIVERSITÄT

Deep Learning

 Learning layered representations

UNIVERSITÄT BO

[Schulz; Behnke, KI 2012]

Neural Abstraction Pyramid

Iterative Image Interpretation

- Interpret most obvious parts first
- Use partial interpretation as context to resolve local ambiguities

Neural Abstraction Pyramid for Object-class Segmentation of RGB-D Video

Recursive computation is efficient for temporal integration

The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in two ways:

1. Generating data:

Automatic data capture, online mesh databases, scene synthesis

2. Improving generalization: Object-centered models, deformable registration, transfer learning, semi-supervised learning

RGB-D Object Recognition and Pose Estimation

Transfer learning from large-scale data sets

[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view

Colorization based on distance from center vertical

[Schwarz, Schulz, Behnke, ICRA2015]

Pretrained Features Disentangle Data

 t-SNE embedding

[Schwarz, Schulz, Behnke ICRA2015]

Recognition Accuracy

Improved both category and instance recognition

	Category Accuracy (%)		Instance Accuracy (%)	
Method	RGB	RGB-D	RGB	RGB-D
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9
Bo <i>et al.</i> [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8
PHOW[3]	80.2 ± 1.8		62.8	
Ours	83.1 ± 2.0	88.3 ± 1.5	92.0	94.1
Ours	83.1 ± 2.0	89.4 ± 1.3	92.0	94.1

0.8

0.6

0.4

0.2

0

Confusion:

[Schwarz, Schulz,

pitcher coffe mug 1:

2: peach sponge

Amazon Robotics Challenge

- Storing and picking of items
- Dual-arm robotic system

[Amazon]

Object Capture and Scene Rendering

Turntable + DLSR camera

Insertion in complex annotated scenes

[Schwarz et al. ICRA 2018]

RefineNet for Semantic Segmentation

- Scene represented as feature hierarchy
- Corse-to-fine semantic segmentation
- Combine higher-level features with missing details

Semantic Segmentation Example

bronze_wire_cup conf: 0.749401 irish_spring_soap conf: 0.811500 playing_cards conf: 0.813761 w_aquarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467 paper_towels conf: 0.903645 white_facecloth conf: 0.895212 hand_weight conf: 0.928119 robots_everywhere conf: 0.930464

mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015

fiskars_scissors conf: 0.831069 ice_cube_tray conf: 0.976856

Amazon Robotics Challenge 2017

Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates

UNIVERSITÄT

Dense Convolutional 6D Object Pose Estimation

- Extension of PoseCNN [Xiang et al. RSS 2018]
- Dense prediction of object center and orientation, without cutting out

[Capellen et al., VISAPP 2020]

T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regression

Extends DETR: End-to-end object detection with transformers [Carion et al. ECCV 2020]
 End-to-end differentiable pipeline for 6D object pose estimation

CNN features

Encoder self-attention

Object detections and decoder attention

Multi-Object 6D Pose Estimation using Keypoint Regression

[Amini et al. under review]

From Turntable Captures to Textured Meshes

Fused & textured result

Self-Supervised Surface Descriptor Learning

- Feature descriptor should be constant under different transformations, viewing angles, and environmental effects such as lighting changes
- Descriptor should be unique to facilitate matching across different frames or representations
- Learn dense features using a contrastive loss

Known correspondences

Learned features

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Descriptors as Texture on Object Surfaces

- Learned feature channels used as textures for 3D object models
- Used for 6D object pose estimation

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Abstract Object Registration

- Compare rendered and actual scene in feature space
- Adapt model pose by gradient descent

45 Behnke Humanoids 2019]

Registration Examples

[Periyasamy, Schwarz, Behnke Humanoids 2019]

Learning from Synthetic Scenes

- Cluttered arrangements from 3D meshes
- Photorealistic scenes with randomized material and lighting including ground truth
- For online learning & render-and-compare
- Semantic segmentation on YCB Video Dataset
 - Close to real-data accuracy
 - Improves segmentation of real data

[Schwarz and Behnke, ICRA 2020]

SynPick: A Dataset for Dynamic Bin Picking Scene Understanding

Object arrangement and manipulation simulation using NVIDIA PhysX
 Untargeted and targeted picking actions, as well as random moving actions

[Periyasamy et al. CASE 2021]

Mobile Manipulation Robot Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

[Schwarz et al. Journal of Field Robotics 2017]

DARPA Robotics Challenge

Allocentric 3D Mapping

 Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]

DLR SpaceBot Cup 2015

Mobile manipulation in rough terrain

Autonomous Mission Execution

 3D mapping, localization, mission and navigation planning

3D object perception and grasping

UNIVERSITÄT

[Schwarz et al. Frontiers 2016]

Navigation Planning

- Costs from local height differences
- A* path planning

[Schwarz et al., Frontiers in Robotics and Al 2016]

Considering Robot Footprint

- Costs for individual wheel pairs from height differences
- Base costs
- Non-linear combination yields
 3D (x, y, θ) cost map

3D Driving Planning (x, y, \theta): A*

16 driving directions

Orientation changes

=> Obstacle between wheels

Making Steps

- If non-drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable

[Klamt and Behnke: IROS 2017]

Planning for a Challenging Scenario

[Klamt and Behnke: IROS 2017]

Centauro Robot

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]

Hybrid Driving-Stepping Locomotion Planning: Abstraction

- Planning in the here and now
- Far-away details are abstracted away

Hybrid Driving-Stepping Locomotion Planning: Abstraction

Level	Map Resolution		Map Features		Robot Representation		Action Semantics	
1		• 2.5 cm • 64 orient.	\land	• Height			\bigwedge	 Individual Foot Actions
2		• 5.0 cm • 32 orient.		HeightHeight Difference				• Foot Pair Actions
3	\bigvee	 10 cm 16 orient.		HeightHeight DifferenceTerrain Class	\bigvee			• Whole Robot Actions

[Klamt and Behnke, IROS 2017, ICRA 2018]

Learning Cost Functions of Abstract Representations

Planning problem

Abstraction CNN

Predict feasibility and costs of local detailed planning

Training data

- generated with random obstacles, walls, staircases
- costs and feasibility from detailed A*-planner
- ~250.000 tasks

Learned Cost Function: Abstraction Quality

a)

CNN predicts feasibility and costs better than manually tuned geometric heuristics

Experiments – Planning Performance

 Learned heuristics accelerates planning, without increasing path costs much

Heuristic preprocessing: 239 sec

Geometric heuristic

[Klamt and Behnke, ICRA 2019]

CENTAURO Evaluation @ KHG: Locomotion Tasks

Transfer of Manipulation Skills

Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations

Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]

Shape-aware Non-rigid Registration

[Rodriguez and Behnke ICRA 2018]

Shape-aware Registration for Grasp Transfer

Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

[Pavlichenko et al., IROS 2017]

Grasping an Unknown Power Drill and Fastening Screws

CENTAURO: Complex Manipulation Tasks

Regrasping for Functional Grasp

- Direct functional grasps not always feasible
- Pick up object with support hand, such that it can be grasped in a functional way

[Pavlichenko et al. Humanoids 2019]

Regrasping Experiments

NimbRo Avatar

- Two-armed avatar robot designed for teleoperation with immersive visualization & force feedback
- Connected to operator station with HMD, exoskeleton and locomotion interface

Team NimbRo Semifinal Submission

AVATAR XPRIZE[®] [Schwarz et al. IROS 2021]

NimbRo Avatar – Applications

AIS

UNIVERSITÄT BONN

[Schwarz et al. IROS 2021]

NimbRo Avatar – VR Visualization System

- 4K stereo video stream
- 6D head arm allows full head movement
- Spherical rendering technique hides movement latencies

[Schwarz and Behnke Humanoids 2021]

NimbRo Avatar – Haptic Manipulation

- Arm exoskeleton (Franka Emika Panda), F/T sensor (OnRobot HEX), hand exoskeleton (SenseGlove)
- Avatar side: Arm + F/T sensor + Schunk SVH / SIH hand
- Method provides force feedback for wrist & fingers
- Avatar limit avoidance using predictive model to reduce latencies

NimbRo Avatar Avatar XPRIZE Semifinals

[Schwarz et al. IROS 2021]

Micro Aerial Vehicles: Hierarchical Navigation

Allocentric planning

Mission plan

Egocentric planning

Obstacle avoidance

[Droeschel et al. JFR 2016]

InventAIRy: Autonomous Navigation in a Warehouse

[Beul et al. RA-L 2018]

InventAIRy: Detected Tags in Shelf

[Beul et al. RA-L 2018]

Label Propagation for 3D Semantic Mapping

- Image-based semantic categorization, trained with Mapillary data set
- 3D fusion in semantic texture
- Backprojection of labels to other views

[[]Rosu et al., IJCV 2019]

3D Semantic Mapping

[Rosu et al., IJCV 2019]

UNIVERSITÄT BON

German Rescue Robotics Center

Initial demonstrator

- Basis: DJI Matrice 600 Pro
- Sensors: Velodyne VLP 16, FLIR Boson, 2x FLIR BlackFly S
- Tiltable sensor head

Current demonstrator

- Basis: DJI Matrice 210 v2
- Sensors: Ouster OS-0, FLIR AGX, 2× Intel RealSense D455
- IP43 water resistance

Supporting Fire Fighters (A-DRZ)

- Added thermal camera
- Flight at Brandhaus Dortmund

[Rosu et al. SSRR 2019]

Mesh-based 3D Modeling + Textures

- Model 3D geometry with mesh
- Appearance and temperature as high-resolution texture

Mesh geometry

RGB texture

Thermal texture

Mapping from 3D mesh to 2D texture

[Rosu et al. SSRR 2019]

Modeling the Brandhaus Dortmund

Multi-hypothesis Tracking of Fire Detections

- Aggregation of egocentric fire detections to filtered allocentric fire hypotheses
- Integration of 2D detections (direction vector) by ray-casting and of 3D detections

[Quenzel et al. ICUAS 2021]

Real-time LiDAR Odometry with Continuous-time Trajectory Optimization

- Simultaneous registration of multiple multiresolution surfel maps using Gaussian mixture models and temporally continuous B-spline
- Accelerated by sparse permutohedral voxel grids and adaptive choice of resolution
- Real-time onboard processing 16-20 Hz

Open-Source

https://github.com/ AIS-Bonn/lidar_mars_registration

[Quenzel and Behnke, IROS 2021]

UNIVERSI

LiDAR Odometry

- Sliding window keyframe approach for drift reduction
- Scan fusion and moving the local map on the surfel level

[Quenzel and Behnke, IROS 2021]

3D LiDAR Mapping

DRZ Living Lab

3D LiDAR Mapping

MBZIRC 2020

- Local mapping with position prior
- GPS offset correction for improved localization
- Dedicated outdoor and indoor maps with seamless localization switching

Semantic Perception: LiDAR Segmentation

- LatticeNet segmentation of 3D point clouds based on sparse permutohedral grid
- Hierarchical information aggregation through U-Net architecture
- LatticeNet is real-time capable and achieves excellent results in benchmarks

[Rosu et al., RSS 2020]

Semantic Fusion: 3D LiDAR Mapping

Minimax-Viking fire house

Semantic multiresolution surfel map

Categories:

- Building
- Persons
- Vehicles
- Fence •
- Vegetation ٠

Segmented point cloud

Semantic Fusion: Temporal LatticeNet

- Semanic segmentation of sequences of 3D point clouds
- Integration of recurrent connections
- Trained on three scans of SemanticKITTI
- Distinguishing moving from parking vehicles

[Rosu et al. Autonomous Robots 2021]

Semantic Perception: Camera-based Segmentation + Detection

RGB image

Semantic segmentation with overlaid detections at the DRZ integration sprint in Bad Oldesloe, Germany

- Pixel-wise semantic segmentation and object detection with Google Edge TPU
- Detection of e.g. buildings, vegetation etc. (DeepLab v3 CNN with MobileNet v3 Backbone)

Semantic Perception: Detection of Persons and Vehicles

RGB image

Semantic segmentation

Person detection in thermal images

- Detection of persons and vehicles in color and thermal images (SSD with MobileNet v3 backbone)
- Runs on board computer with approx. 5 fps

Multi-hypothesis Tracker for Dynamic Objects

- Multi-hypothesis tracker for combining detected objects from image and LiDAR
- Segmentation of LiDAR scan into foreground and background with subsequent grouping of foreground segments of adjacent scan lines and person detection
- 2D image detections + depth camera to derive a 3D detection hypothesis
- Movement of individual instances can be predicted

[Razlaw et al., ICRA 2019]

Semantic Perception: Synthesis of Training Data

Identification of relevant object categories with DRZ partners IFR, FwDo and DFKI

- Review of available data sets
- Generation of synthetic training data with physics-based renderer EasyPBR

[Rosu and Behnke, GRAPP 2021]

Onboard Multimodal Semantic Fusion

- Real-time semantic Segmentation and Object detection (≈9Hz) with EdgeTPU / iGPU
 - SalsaNext for LiDAR
 - DeepLabv3 for RGB images
 - SSD MobileDet for Thermal/RGB
- Late-Fusion for
 - Point cloud
 - Image segmentation

[Bultmann et al. ECMR 2021]

Onboard Multimodal Semantic Fusion

Bayesian fusion of class probabilities in sparse voxel grid

[Bultmann et al. ECMR 2021]

Optimal Obstacle Avoidance Trajectories

- Fast avoidance of immediately perceived obstacles (persons, birds, copters, ...)
- Modeling of dynamic obstacles with assumption of constant speed

Optimale Ausweichtrajektorien um statische Hindernisse

LiDAR-based Obstacle Avoidance

- Fast analytical collision check with 3D point cloud
- Planning of alternative trajectories if original trajectory causes collision
- Selection and execution of a collision-free alternative trajectory

Collision check

Generation of alternative trajectories

Selection based on distance to target and previous trajectory

Dynamic 3D Navigation Planning

- Positions and velocities in sparse local multiresolution grid
- Adaptation of movement primitives to grid
- Optimization of flight time and control costs
- 1 Hz replanning

[Schleich and Behnke, ICRA 2021]

Planning with Visibility Constraints

- Extra costs for flight through unmapped volumes
- Consideration of sensor frustum:
 - Coupling of vertical and horizontal motion
 - Preferred forward flight with limited rotational speed

Observation Pose Planning

- Planning of observation poses with line of sight to the target object despite occlusions
- Target objects are defined by position, line of sight and distance
- Optimization of observation poses with regard to visibility quality and accessibility

Initial observation pose

Optimized path

Autonomous Flight without GNSS

DRZ Dortmund

Autonomous Flight without GNSS for Disaster Examination

[Schleich et al., ICUAS 2021]

Exploration

- Definition of target area w.r.t. sattelite images or steet
- Simple exploration patterns (spirals, meanders, ...)
- Collision check
- TSP to determine segment sequence
- Continous replanning

Campus Poppelsdorf

Autonomous Exploration

DRZ Dortmund

Terrain Classification for Traversability

- Based on voxelfiltered aggragated point cloud
- Terrain classification based on local height differences in the robot ground robot footprints
- Categories: drivable, walkable, unpassable
- Reachability analysis

Aggregated colored point cloud

Local height differences

[Schleich et al., ICUAS 2021]

Conclusions

- Developed capable robotic systems for challenging scenarios
 - Humanoid soccer
 - Domestic service
 - Bin picking
 - Disaster response
 - Aerial robots
- Challenges include
 - 4D semantic perception
 - High-dimensional motion planning
- Promising approaches
 - Prior knowledge (inductive bias)
 - Shared experience (fleet learning)
 - Shared autonomy (human-robot)
 - Instrumented environments

