Semantic RGB-D Perception for Cognitive Robots

Sven Behnke

Computer Science Institute VI Autonomous Intelligent Systems

Our Domestic Service Robots

Dynamaid

Cosero

- Size: 100-180 cm, weight: 30-35 kg
- 36 articulated joints
- PC, laser scanners, **Kinect**, microphone, ...

RoboCup 2013 Eindhoven

Analysis of Table-top Scenes and Grasp Planning

- Detection of clusters above horizontal plane
- Two grasps (top, side)

Flexible grasping of many unknown objects

[Stückler, Steffens, Holz, Behnke, Robotics and Autonomous Systems 2012]

3D-Mapping with Surfels

3D-Mapping with Surfels

3D-Mapping and Localization

- Registration of 3D laser scans
- Representation of point distributions in voxels
- Drivability assessment trough region growing
- Robust localization using 2D laser scans

[Kläß, Stückler, Behnke: Robotik 2012]

3D Mapping by RGB-D SLAM

- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU
- Global optimization

[Stückler, Behnke: Journal of Visual Communication and Image Representation 2013]

Multi-camera SLAM

[Stoucken, Diplomarbeit 2013]

5cm

2,5cm

Learning and Tracking Object Models

Modeling of objects by RGB-D-SLAM

Real-time registration with current RGB-D image

Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration

Transformation of Poses on Object

Derived from the deformation field

Grasp & Motion Skill Transfer

Demonstration at RoboCup 2013 [Stückler, Behnke, ICRA2014]₁₂

Tool use: Bottle Opener

- Tool tip perception
- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation

[Stückler, Behnke, Humanoids 2014]

Picking Sausage, Bimanual Transport

- Perception of tool tip and sausage
- Alignment with main axis of sausage

 Our team NimbRo won the RoboCup@Home League in three consecutive years

[Stückler, Behnke, Humanoids 2014]

Hierarchical Object Discovery trough Motion Segmentation

- Motion is strong segmentation cue
- Both camera and object motion

Segment-wise registration of a sequence

Inference of a segment hierarchy

Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Inner nodes compare color / depth of regions
- Size normalization
- Training and recall on GPU
- 3D fusion through RGB-D SLAM
- Evaluation on own data set and NYU depth v2

Accuracy in %	Ø Classes	Ø Pixels
Silberman et al. 2012	59,6	58,6
Couprie et al. 2013	63,5	64,5
Random forest	65,0	68,1
3D-Fusion	66,8	70,6

[Stückler et al., Journal of Real-Time Image Processing 2014]

Learning Depth-sensitive CRFs

- SLIC+depth super pixels
- Unary features: random forest
- Height feature

- Pairwise features
 - Color contrast
 - Vertical alignment
 - Depth difference
 - Normal differences
- Results:

Random forest

CRF prediction

Ground truth

similarity	
between	
superpixel	

normals

	class average	pixel average
RF	65.0	68.3
RF + SP	65.7	70.1
RF + SP + SVM	70.4	70.3
RF + SP + CRF	71.9	72.3
Silberman <i>et al</i> .	59.6	58.6
Couprie <i>et al</i> .	63.5	64.5

[Müller and Behnke, ICRA 2014]

Object Class Detection in RGB-D

- Hough forests make not only object class decision, but describe object center
- RGB-D objects data set
- Color and depth features
- Training with rendered scenes
- Detection of object position and orientation

Depth helps a lot

[Badami, Stückler, Behnke: SPME 2013]

Bin Picking

 Known objects in transport box

Matching of graphs of 2D and 3D shape primitives

Grasp and motion planning

Offline

Online

[Nieuwenhuisen et al.: ICRA 2013]

Learning of Object Models

- Scan multiple objects in different poses
- Find support plane and remove it
- Segment views
- Register views using ICP
- Recognize geometric primitives

Registered views

Surface reconstruction

Detected primitives

[Holz et al. STAR 2014]

Active Object Perception

 Efficient exploration of the part arrangement in the transport boxes to handle occlusions

[Holz et al. STAR 2014]

Active Object Perception

 Efficient exploration of the part arrangement in the transport boxes to handle occlusions

Active Object Perception

 Efficient exploration of the part arrangement in the transport boxes to handle occlusions

[Holz et al. STAR 2014]

Industrial Application: Depalettizing

- Using work space RGB-D camera
- Initial pose of transport box roughly known
- Detect dominant horizontal plane above ground
- Cluster points above support plane
- Estimate main axes

Object View Registration

- Wrist RGB-D camera moved above innermost object candidate
- Object views are represented as Multiresolution Surfel Map
- Registration of object view with current measurements using soft assignments
- Verification based on registration quality

Part Detection and Grasping

We detect potential object candidates using the workspace camera.

[Holz et al. IROS 2015]

Depalletizing Results: 10 Runs

Total time

Component	Mean	Std	Min	Max
Object detection and grasping	$13.84\mathrm{s}$	$1.89\mathrm{s}$	$10.42\mathrm{s}$	$23.81\mathrm{s}$
Full cycle (incl. release and returning to initial pose)	$34.57\mathrm{s}$	$3.01\mathrm{s}$	$29.53\mathrm{s}$	$49.52\mathrm{s}$

Component times and success rates

Component	Mean	Std	Min	Max	Success Rate
Initial object detection	26.3 ms	10.3 ms	0.02 ms	$38.5\mathrm{ms}$	100%
Detecting that the pallet is empty					100%
Object localization & verification	$532.7\mathrm{ms}$	$98.2\mathrm{ms}$	$297.0\mathrm{ms}$	800.1 ms	100%
Identifying wrong objects					100%
Grasping a found object	7.80 s	$0.56\mathrm{s}$	6.90 s	$10.12\mathrm{s}$	99%

[Holz et al. IROS 2015]

Part Verification Results

Parts used for verification

Detection confidences

Object	Mean	Std	Min	Max
Correct object ("cross clamp")	0.901	0.024	0.853	0.951
Similar cross clamp (pose 1)	0	0	0	0
Similar cross clamp (pose 2)	0.407	0.034	0.299	0.452
Small starter	0	0	0	0
Large starter	0.505	0.055	0.398	0.581
Smaller cross clamp	0	0	0	0

Different Lighting Conditions

Artificial light and day light

Only daylight

Low light

In all cases, the palette was successfully cleared.

[Holz et al. IROS 2015]

Deep Learning

[Schulz and Behnke, KI 2012]

GPU Implementations (CUDA)

- Affordable parallel computers
- General-purpose programming
- Convolutional [Scherer & Behnke, 2009]

Local connectivity [Uetz & Behnke, 2009]

Image Categorization: NORB

10 categories, jittered-cluttered

Max-Pooling, cross-entropy training

Test error: 5,6% (LeNet7: 7.8%)

[Scherer, Müller, Behnke, ICANN'10]

Image Categorization: LabelMe

- 50,000 color images (256x256)
- 12 classes + clutter (50%)

car 1.0

person 1.0 keyboard 1.0

sign 1.0

bookshelf 1.0

car 0.21

person 0.54 window 0.66 building 1.0,

tree 0.03

(none)

(none)

(none)

(none)

Error TRN: 3.77%; TST: 16.27% Recall: 1,356 images/s

[Uetz, Behnke, ICIS2009]

Object-class Segmentation

- [Schulz, Behnke 2012] Class annotation per pixel PC MS C_2 I_2 On RO C_1 0 RO P_0 P_0' Multi-scale input channels I_0 C_0 O_0 Input Layer O. Output Layer \rightarrow Convolution > Max-Pooling Evaluated on MSRC-9/21
 - Evaluated on MSRC-9/21 and INRIA Graz-02 data sets

Object Detection in Images

- Bounding box annotation
- Structured loss that directly maximizes overlap of the prediction with ground truth bounding boxes
- Evaluated on two of the Pascal VOC 2007 classes

[Schulz, Behnke, ICANN 2014]

RGB-D Object-Class Segmentation

- Scale input according to depth
- Compute pixel height

NYU Depth V2

Method	floor	struct	furnit	prop	Class Avg.	Pixel Acc.
CW	84.6	70.3	58.7	52.9	66.6	65.4
CW+DN	87.7	70.8	57.0	53.6	67.3	65.5
CW+H	78.4	74.5	55.6	62.7	67.8	66.5
CW+DN+H	93.7	72.5	61.7	55.5	70.9	70.5
CW+DN+H+SP	91.8	74.1	59.4	63.4	72.2	71.9
CW+DN+H+CRF	93.5	80.2	66.4	54.9	73.7	73.4
Müller et al.[8]	94.9	78.9	71.1	42.7	71.9	72.3
Random Forest [8]	90.8	81.6	67.9	19.9	65.1	68.3
Couprie et al.[9]	87.3	86.1	45.3	35.5	63.6	64.5
Höft et al.[10]	77.9	65.4	55.9	49.9	62.3	62.0
Silberman [12]	68	59	70	42	59.7	58.6

CW is covering windows, H is height above ground, DN is depth normalized patch sizes. SP is averaged within superpixels and SVM-reweighted. CRF is a conditional random field over superpixels [8]. Structure class numbers are optimized for class accuracy.

[Schulz, Höft, Behnke, ESANN 2015]

Iterative Interpretation

[Behnke, LNCS 2766, 2003]

Interpret most obvious parts first

 Use partial interpretation as context to resolve local ambiguities

Local Recurrent Connectivity

Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

- NYU Depth V2 contains RGB-D video sequences
- Recursive computation is efficient for temporal integration

	Cla	ass Acc	Average (%)			
Method	ground	struct	furnit	prop	Class	Pixel
Höft <i>et al.</i> [19] Unidirectional + MS	77.9 73.4	65.4 66.8	55.9 60.3	49.9 49.2	62.0 62.4	61.1 63.1
Schulz et al. [20] (no height)	87.7	70.8	57.0	53.6	67.3	65.5
Unidirectional + SW	90.0	76.3	52.1	61.2	69.9	67.5

[Pavel, Schulz, Behnke, IJCNN 2015]

Geometric and Semantic Features for RGB-D Object-class Segmentation

- New geometric feature: distance from wall
- Semantic features pretrained from ImageNet
- Both help significantly

[Husain et al. under review]

Semantic Segmentation Priors for Object Discovery

- Combine bottomup object discovery and semantic priors
- Semantic segmentation used to classify color and depth superpixels
- Higher recall, more precise object borders

[Garcia et al. under review]

RGB-D Object Recognition and Pose Estimation

Use pretrained features from ImageNet

[Schwarz, Schulz, Behnke, ICRA2015]

Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view

 Colorization based on distance from center vertical

[Schwarz, Schulz, Behnke, ICRA2015]

Features Disentangle Data

[Schwarz, Schulz, Behnke ICRA2015]

• t-SNE

Recognition Accuracy

Improved both category and instance recognition

	Category A	ccuracy (%)	Instance Accuracy (%)		
Method	RGB	RGB-D	RGB	RGB-D	
Lai <i>et al.</i> [1]	74.3 ± 3.3	81.9 ± 2.8	59.3	73.9	
Bo <i>et al.</i> [2]	82.4 ± 3.1	87.5 ± 2.9	92.1	92.8	
PHOW[3]	80.2 ± 1.8		62.8		
Ours	83.1 ± 2.0	88.3 ± 1.5	92.0	94.1	
Ours	83.1 ± 2.0	89.4 ± 1.3	92.0	94.1	

[Schwarz, Schulz, Behnke, ICRA2015]

Conclusion

- Semantic perception in everyday environments is challenging
- Simple methods rely on strong assumptions (e.g. support plane)
- Depth helps with segmentation, allows for size normalization, geometric features, shape descriptors
- Deep learning methods work well
- Transfer of features from large data sets
- Many open problems, e.g. total scene understanding, incorporating physics, ...

Thanks for your attention!

Questions?