NimbRo-OP2(X): RoboCup AdultSize-winning Opensource Humanoid Soccer Robots

Sven Behnke

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Issues of Robotic Performance Evaluation

- Benchmarking robotics research inherently difficult
- Often, results reported only for a specific robotic system and a self-chosen task, solved in own lab
- Impossible to compare results
- Commonly used "proof by video" has same difficulties as "proof by example"

[Boston Dynamics: Handle]

Robot Competitions and Challenges

- Bring together researchers, students, and enthusiasts in the pursuit of a technological challenge
- Popular competitions include
 - RoboCup
 - DARPA Robotics Challenge
 - Mohamed Bin Zayed International Robotics Challenge (MBZIRC)
 - International Aerial Robotics Competition
- Provide a standardized test bed
 - in a different environment
 - at a scheduled time
- Directly compare different approaches

[Robo-one]

RoboCup German Open 2005

Some of our Humanoid Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Mobile manipulation

Soccer

Domestic service

Telepresence

RoboCup 2008 KidSize Final NimbRo vs. Team Osaka

Omnidirectional Walking

- Continuously changing walking speeds: sagittal, lateral, yaw
- Key ingredients:
 - Rhythmic weight shifting
 - Leg shortening
 - Swing in walking direction

RoboCup 2013 Final

Step parameters **Capture Step Framework Motion Generator Balance** Control х V Velocity input: LIP model **Determines when** (x, \dot{x}, y, \dot{y}) Motor targets and where to make the next step to Robot **State Estimation** regain balance and continue walking 쓰 [Missura, Behnke: Humanoids 2013,

⁹ RoboCup 2014]

Sensor data

Balance Control

Adapt ZMP, timing, and foot placement

UNIVERSITÄ'

Omnidirectional Capture Steps

[Missura and Behnke: Humanoids 2013, RoboCup 2014]

Online Learning of Foot Placement

[Missura and Behnke: IROS 2015]

Online Learning of Foot Placement

[Missura and Behnke: IROS 2015]

Visual Perception of Soccer Scene

Feedback Mechanisms

[Allgeuer and Behnke: Humanoids 2016]

PD Feedback

[Allgeuer and Behnke: Humanoids 2016]

Landing Motion Backwards

Landing Motion Forwards

Getting Up

RoboCup 2016 TeenSize Final

NimbRo-OP2

3D printed structure, driven by Dynamixel

23

NimbRo-OP2 @ RoboCup 2017 AdultSize Final

NimbRo-OP2 Omnidirectional Gait with Capture Steps

NimbRo-OP2X @ RoboCup 2018

Transfer Learning for Visual Perception

- Encoder-decoder network
- Two outputs
 - Object detection
 - Semantic segmentation
- Location-dependent bias

- Detects objects that are hard to recognize for humans
- Robust to lighting changes

RoboCup 2019 in Sydney

Learning Omnidirectional Gait from Scratch

- State includes joint positions and velocities, robot orientation, robot speed
- Actions are increments of joint positions
- Simple reward structure
 - Velocity tracking
 - Pose regularization
 - Not falling

Learning Curriculum

- Start with small velocities
- Increase range of sampled velocities

UNIVERSITÄT

Learned Omnidirectional Gait

Target velocity can be changed continuously

Our locomotion controller is able to: Walk Forward

$$v_x = 0.6 \text{ m/s}$$

 $v_y = 0.0 \text{ m/s}$
 $\omega_z = 0.0 \text{ rad/s}$

Learning Mapless Humanoid Navigation

- Visual (RGB images) and nonvisual observations to learn a control policy and an environment dynamics model
- Anticipate terminal states of success and failure

Inference

Training

Learning Mapless Humanoid Navigation

Improved Vision System

- New 5 MPixel camera: Logitech C930e
- Wider field-of-view
- New GPU: Nvidia RTX A2000
- Data augmentation with multiple ball designs
- More robust perception for far-away objects and field lines
- Improved localization

Wide-angle image

Object detection

[Pavlichenko et al. Robot World Cup XXV, Springer 2022]

Robust Omnidirectional Gait with Diagonal Kick

- Gait based on Capture Step Framework [Missura et al. IJHR 2019]
- Improved balance state estimation [Ficht and Behnke, CLAWAR 2022]
- Phase-based in-walk kicks in many directions

[Pavlichenko et al. Robot World Cup XXV, Springer 2022]

Phase-based In-walk Kicks in Many Directions

Graphical Debugging and Diagnostics

Graphical Debugging and Diagnostics

38

[Pavlichenko et al. Robot World Cup XXV, Springer 2022]

RoboCup 2022 in Bangkok

Conclusions

- Developed capable bipedal soccer robots
 - 3D printed structure
 - Deep learning-based visual perception
 - Omnidirectional gait
 - Capture steps
 - Flexible kicks
 - Debugging tools
- Open-source hard- and software
- Future challenges
 - Running
 - Dynamic whole-body motion
 - Other applications, such as personal assistance

NimbRo-OP2X

