Generalizing Scene Parsing for Cluttered Bin Picking

Sven Behnke and Max Schwarz

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Cognitive Robots @ AIS Bonn

- Focus on **cognitive** robot systems
- Equipped with numerous sensors and actuators
- Demonstration in complex scenarios

Soccer

Domestic service

Mobile manipulation

Bin picking

Aerial inspection

NimbRo Picking @ Amazon Robotics Challenge 2017

Object Capture and Scene Rendering

[Schwarz et al. ICRA 2018]

Semantic Segmentation

Based on RefineNet [Lin et al. CVPR 2016]Suction grasp points in center of segments

bronze_wire_cup conf: 0.749401 irish_spring_soap conf: 0.811500 playing_cards conf: 0.813761 w_aquarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467 paper_towels conf: 0.903645 white_facecloth conf: 0.895212 hand_weight conf: 0.928119 robots_everywhere conf: 0.930464

mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015 fiskars_scissors conf: 0.831069 ice_cube_tray conf: 0.976856

[Schwarz et al. ICRA 2018]

Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates
- Object mesh registration

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]

Dense Convolutional 6D Object Pose Estimation

- Extension of PoseCNN [Xiang et al. RSS 2018]
- Dense prediction of object centers and orientations, without cutting out objects

Towards Iterative Scene Parsing

- So far:
 - Instantaneous scene segmentation & rough pose estimation
- Goal:
 - Full scene **understanding**: Explain the measurements of the scene

Training Data: From Turntable Captures to Textured Meshes

Fused & textured result

Improvement on method of Narayan et al. 2015, Publication pending

Self-Supervised Surface Descriptor Learning

- Feature descriptor should be constant under different transformations, viewing angles, and environmental effects such as lighting changes
- Descriptor should be unique to facilitate matching across different frames or representations
- Learn dense features using a contrastive loss [Schmidt et al. 2016]

Known correspondences

Learned features

Learned Scene Abstraction

Descriptors as Texture on Object Surfaces

- Learned feature channels used as textures for 3D object models
- Used for 6D object pose estimation

Abstract Object Registration

- Compare rendered and actual scene in feature space
- Adapt model pose by gradient descent

Abstract Object Registration

- Compare rendered and actual scene in feature space
- Adapt model pose by gradient descent

Registration Examples

Evaluation on YCB-Video

- Consistent improvement on PoseCNN (Xiang et al. 2018) predictions
- Monocular (no depth)

PoseCNN initialization

Optimization result

	PoseCNN [5]		PoseCNN refined (ours)			
Object	ADD	ADD-S	ADD(Δ) A	DD-S(Δ)
master_chef_can	50.2	83.9	63.3(+13)	3.1)	91.7(+7.8)
cracker_box	53.1	76.9	65.3(+1)	2.2)	81.7(+4.9)
sugar_box	68.4	84.2	85.3(+1)	6.9)	92.0(+7.8)
tomato_soup_can	66.2	81.0	59.4(-	6.8)	79.9(-1.1)
mustard_bottle	81.0	90.4	86.5(+	5.5)	92.3(+1.9)
tuna_fish_can	70.7	88.0	81.1(+10)	0.4)	94.3(+6.3)
pudding_box	62.7	79.1	71.1(+	8.4)	83.1(+4.1)
gelatin_box	75.2	87.2	81.5(+	6.3)	89.1(+1.9)
potted_meat_can	59.5	78.5	63.7(+4	4.2)	80.3(+1.8)
banana	72.3	86.0	82.1(+	9.8)	91.8(+5.8)
pitcher_base	53.3	77.0	85.1(+3)	1.8)	92.7(+	-15.7)
bleach_cleanser	50.3	71.6	65.0(+1)	4.7)	80.4(+8.9)
bowl	3.3	69.6	6.5(+3)	3.1)	75.5(+5.9)
mug	58.5	78.2	65.9(+'	7.4)	84.0(+5.9)
power_drill	55.3	72.7	73.7(+13)	8.4)	85.9(+	-13.2)
wood_block	26.6	64.3	45.5(+13)	8.9)	73.3(+9.0)
scissors	35.8	56.9	40.0(+4	4.1)	58.6(+1.7)
large_marker	58.3	71.7	63.9(+	5.6)	77.3(+5.6)
large_clamp	24.6	50.2	37.0(+1)	2.4)	65.1(+	-15.0)
extra_large_clamp	16.1	44.1	25.4(+9)	9.3)	63.7(+	-19.6)
foam_brick	40.2	88.0	43.3(+	3.1)	90.8(+2.8)
ALL	53.7	75.8	62.8(+	9.1)	82.4(+6.6)

Learning from Synthetic Scenes

- Cluttered arrangements from 3D meshes
- Photorealistic scenes with randomized material and lighting including ground truth
- For online learning & render-and-compare
- Semantic segmentation on YCB Video Dataset
 - Close to real-data accuracy
 - Improves segmentation of real data

[Schwarz et al. 2020 (submitted)]

Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations

Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]

Shape-aware Non-rigid Registration

[Rodriguez and Behnke ICRA 2018]

Shape-aware Registration for Grasp Transfer

Full point cloud

Partial view

Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

[Pavlichenko et al., IROS 2017]

Grasping an Unknown Power Drill and Fastening Screws

Regrasping

- Direct functional grasps not always feasible
- Pick up object with support hand, such that it can be grasped in a functional way

[Pavlichenko et al. Humanoids 2019]

Regrasping

Robot Experiments

25

Conclusions

- Contributions in individual modules, integration is work-in-progress
- Structured models (e.g. rigid/nonrigid meshes) are advantageous for scene parsing
- Synthetic training data can replace real data

Next: Interactive Perception!

