Learning Semantic Perception for Cluttered Bin Picking

Sven Behnke and Max Schwarz

University of Bonn Computer Science Institute VI Autonomous Intelligent Systems

Bin Picking

- Removing items from containers and shelves
- Still often performed by humans
- Difficulties include
 - Item variability
 - Problematic material properties
 - Articulation of objects
 - Lacking grasp affordances
 - Chaotic storage
 - Inaccessibility

[Amazon]

Our Past Experience

ActReMa

STAMINA

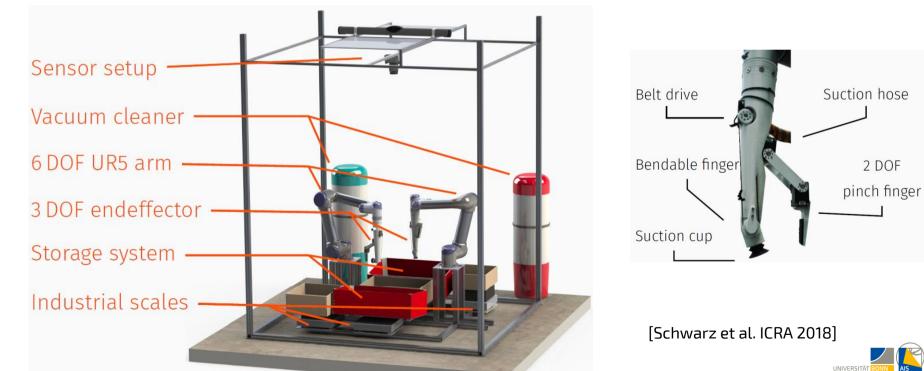
Amazon Picking

EuRoC C2

EuRoC C1

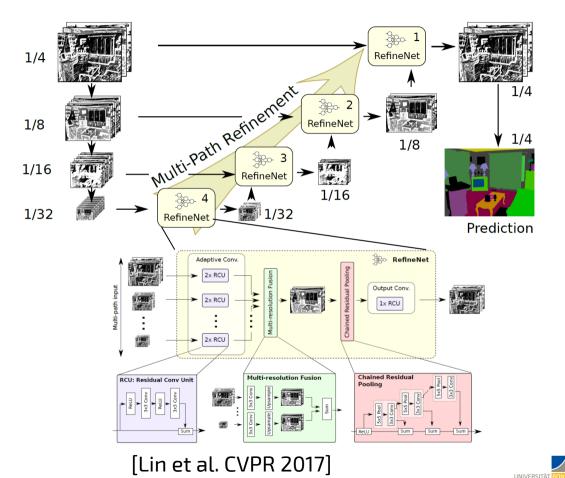
Amazon Robotics Challenge 2017

- Quickly learn novel objects
- Design own storage system



RefineNet for Semantic Segmentation

- Scene represented as feature hierarchy
- Corse-to-fine semantic segmentation
- Combine higher-level features with missing details



The Data Problem

Deep Learning in robotics (still) suffers from shortage of available examples

We address this problem in two ways:

1. Generating data:

Automatic data capture, online mesh databases, scene synthesis

2. Improving generalization: Object-centered models, deformable registration, transfer learning, semi-supervised learning

Object Capture and Scene Rendering

Turntable + DLSR camera

Rendered scenes

[Schwarz et al. ICRA 2018]

ARC 2017 Perception Example

bronze_wire_cup conf: 0.749401 irish_spring_soap conf: 0.811500 playing_cards conf: 0.813761 w_aquarium_gravel conf: 0.891001 crayons conf: 0.422604 reynolds_wrap conf: 0.836467

> paper_towels conf: 0.903645

white_facecloth conf: 0.895212

hand_weight conf: 0.928119

robots_everywhere conf: 0.930464⁻

mouse_traps conf: 0.921731 windex conf: 0.861246 q-tips_500 conf: 0.475015

fiskars_scissors /conf: 0.831069

ice_cube_tray /conf: 0.976856

Amazon Robotics Challenge 2017 Final

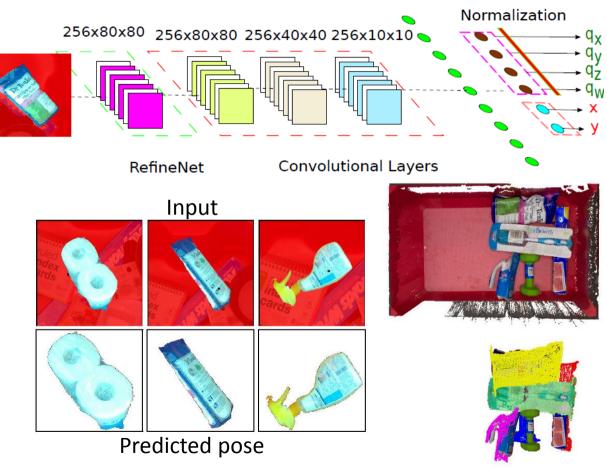
Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input

 Predict pose coordinates

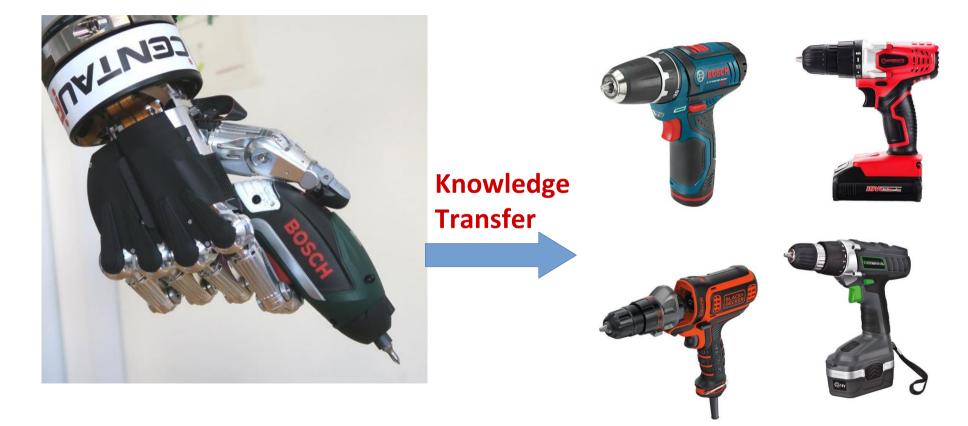
Object	Translation [pixel ¹]		Orientation [°]	
	train	val	train	val
Browns brush	10.3	11.4	7.7	10.3
Epsom salts	11.2	12.5	7.4	10.5
Hand weight	9.6	10.4	2.1	2.6
Reynolds wrap	11.6	11.8	6.3	9.8
Utility brush	12.5	13.6	6.9	10.9

¹ Relative to the 320×320 crop centered on the object.



[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]

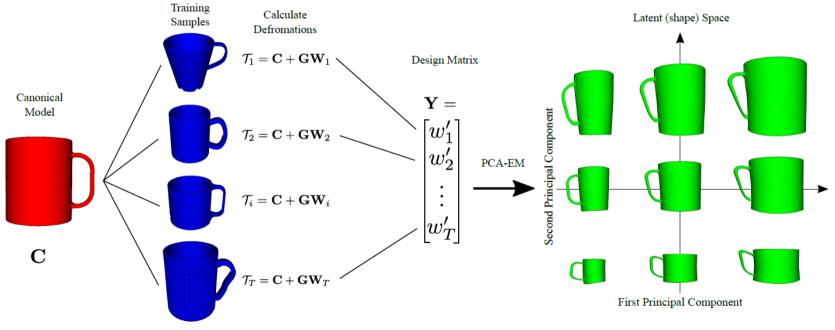
Transfer of Manipulation Skills



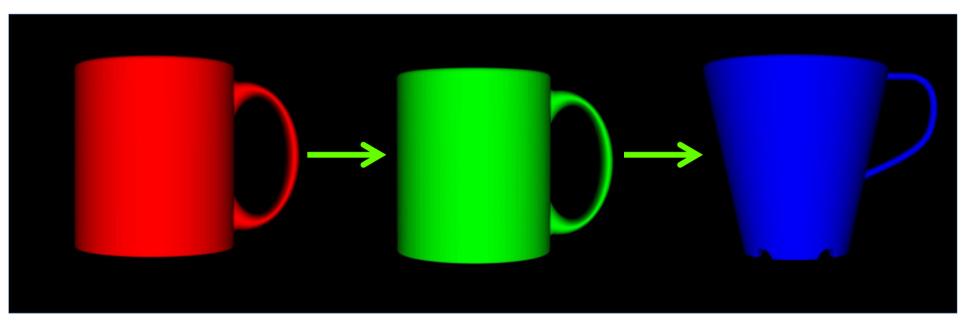
Learning a Latent Shape Space

Non-rigid registration of instances to canonical model

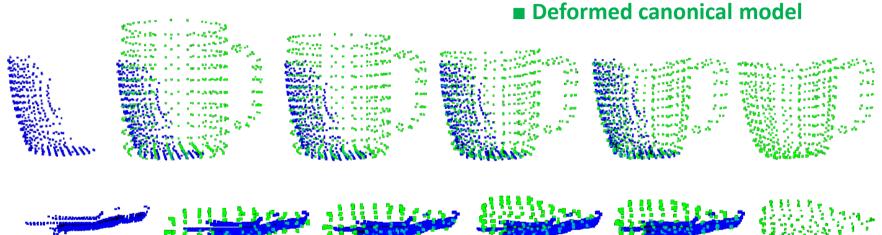
Principal component analysis of deformations



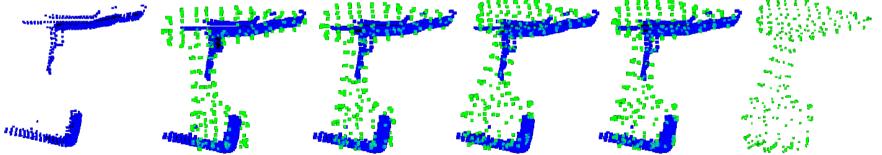
Interpolation in Shape Space



Shape-aware Non-rigid Registration



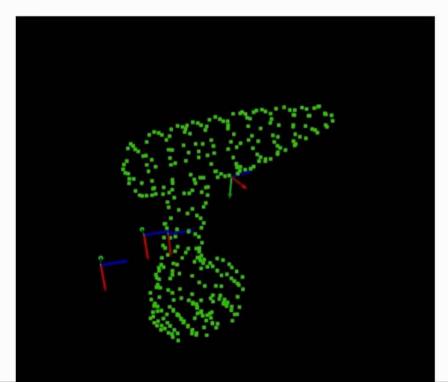
Partial view of novel instance



[Rodriguez and Behnke ICRA 2018]

Transference of Grasping Skills

Warp grasping information



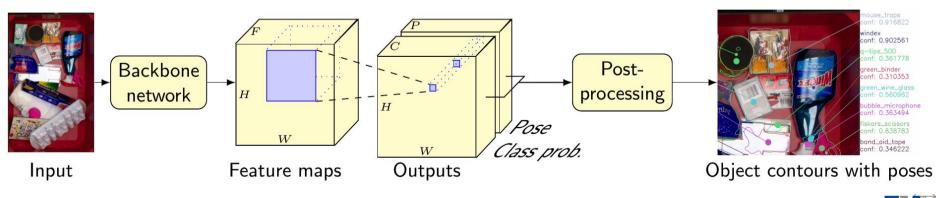
Grasping an Unknown Power Drill

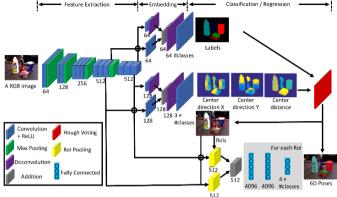
Fully Convolutional 6D Pose Estimation

Extending PoseCNN

[Xiang, Schmidt, Narayanan, Fox: PoseCNN: A convolutional neural network for 6D object pose estimation in cluttered scenes. RSS 2018]

Fully convolutional (per-pixel) prediction of pose parameters: 2D center offset, depth, orientation as quaternion



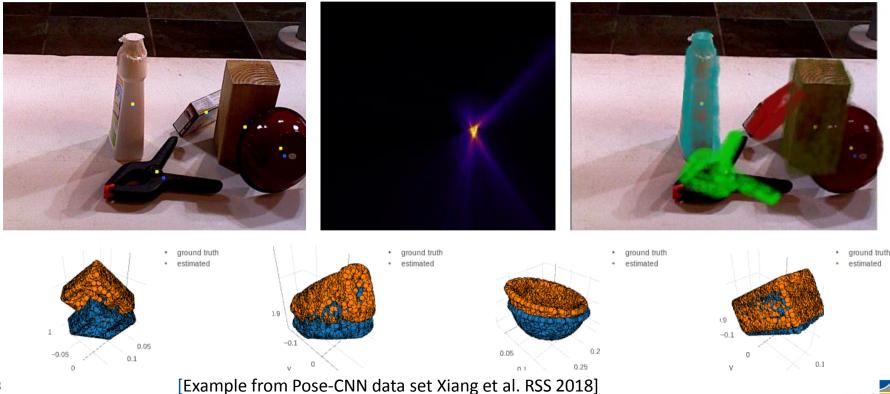


UNIVERSITÄ'

Fully Convolutional 6D Pose Estimation

Hough voting to find object centers in 2D

Quaternions aggregated using Hough inliers and semantic segmentation



Capturing More Data: ARC Bin Dataset

Sensors: Nikon DSLR + Photoneo PhoXi XL scanner. 230 bin frames, 30 different objects

From Turntable Captures to Meshes

- Turntable setup:
 - DSLR (Nikon D3400)
 - Depth sensor (PrimeSense Carmine)
 - Dynamixel actuator
- Fast calibration:
 - Automatic capture of checkerboard images
 - Ceres-based optimization of camera extrinsics
- Meshing:
 - Masking via Background Subtraction
 - Extract isosurface of visual hull + TSDF from depth sensor
 - Texturing with Color Map Optimization

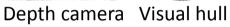
Range Sensor and Silhouette Fusion for High-Quality 3D Scanning Karthik S. Narayan, James Sha, Arjun Singh, and Pieter Abbeel ICRA 2015

Color Map Optimization for 3D Reconstruction with Consumer Depth Cameras Qian-Yi Zhou, Vladlen Koltun ACM TOG 2014

From Turntable Captures to Meshes

Reflections & Unreliable Depth

DSLR image



Concavities

UNIVERSITÄT

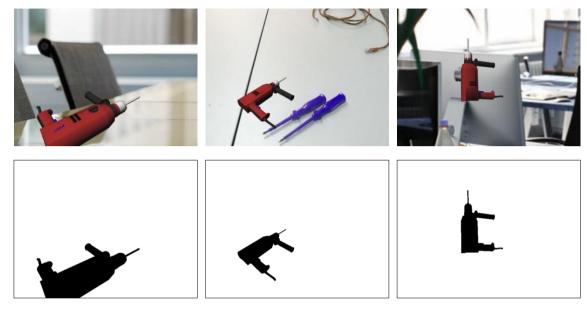
An Alternative: CAD Meshes

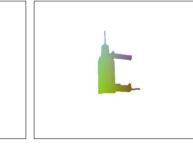
Meshes found by search term "drill" on https://sketchfab.com

Rendering 3D Scenes

Advantages of mesh-based scene synthesis:

- Generate new scenes on-the-fly during training
- OpenGL/CUDA interop
- Simulate variations in hue, lighting, scale, rotation, camera intrinsics, ...
- Cheap ground truth:
 - segmentation labels
 - object-centric coordinates
 - occlusion information

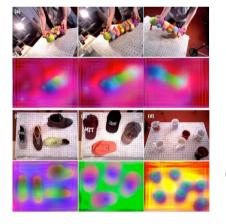




• ...

Self-Supervised Feature Learning

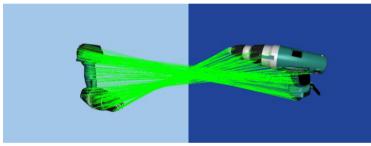
Self-supervised Visual Descriptor Learning for Dense Correspondence T. Schmidt, R. A. Newcombe, D. Fox Robotics and Automation Letters, 2017



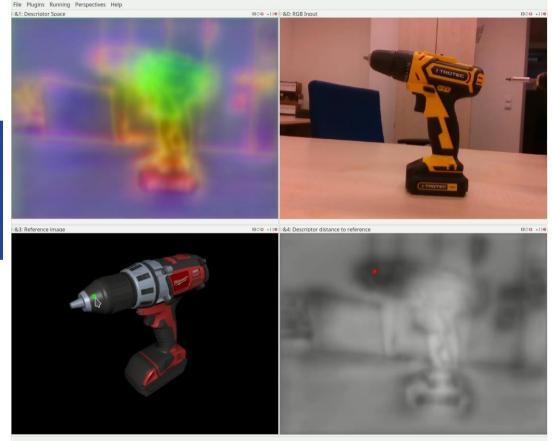
Dense Object Nets: Learning Dense Visual Object Descriptors by and for Robotic Manipulation P. Florence, L. Manuelli, R. Tedrake CoRL 2018

Visual Descriptor Learning

 Trained on 1100 frames rendered from 22 CAD meshes

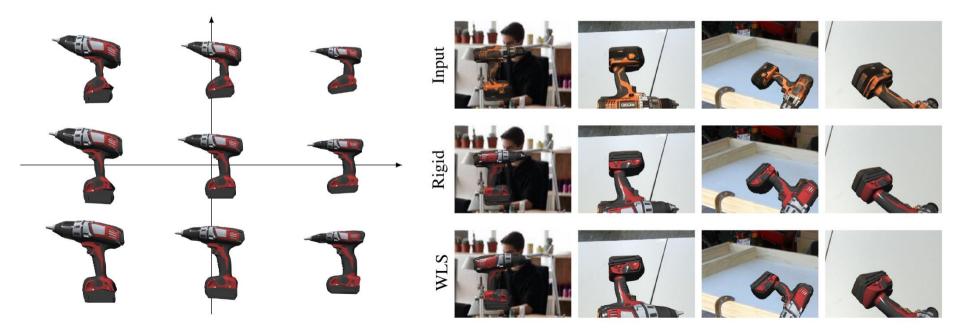


- Pixel-wise contrastive loss
- No training signal between different instances!



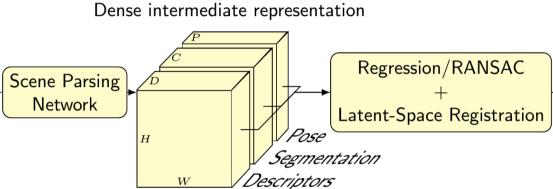
Combination with Non-Rigid Registration

- Shape space creation using correspondence from visual descriptors
- Inference: Semantic segmentation, RANSAC, shape-aware fine registration

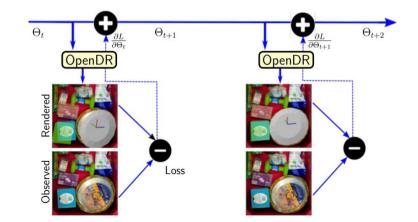


Outlook

Complete scene parsing pipeline utilizing learned descriptors and shape models



Iterative refinement by render and compare



Registered instances

Conclusions

- Developed methods for learning semantic perception of cluttered bin scenes
- Integration to APC/ARC systems
- Addressed data problem by
 - Data capture and annotation
 - Synthesizing scenes
 - Deformable models
- Much further research needed for complete scene understanding

ARC 2017 team NimbRo Picking

